بر اورود ارزش اقتصادی کارکرد تنظیم گازها در اکوسیستم‌های مرتعی حوزه آبخیز تهم
حسن یگانه 1، حسین اذرینودیان، ابرج صالحی، حسین ارژنی و حمید امیدرزا

چکیده
هدف از این مطالعه برآورد ارزش اقتصادی کارکرد تنظیم گازها در اکوسیستم‌های مرتعی حوزه آبخیز تهم بود. در این تحقیق
از روش اندازه‌گیری های تجربی و فرمول فتوسنتز بهترین برای محاسبه گذب و دخیله کربن و عرضه اکسیژن استفاده شد. در
این تحقیق برای ضریب تبدیل و میزان کربن آلی گیاه از روش سوزاندن (احراق) در کورهای الکتریکی استفاده شد. همچنین
برای ارزش گذاری کارکرد ترسیب کربن از سیاست مالیات بر کربن و مخارج انتشار کربن به عنوان ارزش سه‌ای کردن استفاده
شد و ارزش کارکرد عرضه اکسیژن نیز با استفاده از روش هزینه گمگین محاسبه شد. نتایج نشان داد، به طور متوسط در هر
هکتار از اکوسیستم‌های مرتعی نیم‌استوی حوزه آبخیز تهم، سالانه 9/1 تن دی‌کسید کربن (0/54 تن کربن در هکتار) گذب
و به طور متوسط سالانه 1/15 تن اکسیژن تولید می‌شود. ارزش سایه‌ای گذب کربن توسط گذب‌های مرتعی حوزه تهم برای با

2325/4 میلیون ریال در سال و ارزش اقتصادی تولید اکسیژن نیز برای 4/772 میلیون ریال در سال، برآورد شد.

به طور کلی اکوسیستم‌های مرتعی حوزه آبخیز تهم سالانه ارزش می‌کنند که متوسط 130/28 میلیون ریال (950 هزار ریال در هکتار) أز

لحن کارکرد تنظیم گازهای دارند. با استفاده از میزان سیرالی از مرتعی و میزان طبیعی، ترسیب کربن و تولید اکسیژن به عنوان
یکی از تولیدات مرتعی در کنار اقتصادهای شناخته شده در زمینه تولید علفه، گیاهان دارویی، محصولات فرعی، چرای دام و

حقایق وشکست و استفاده‌های نفرط‌گاهی قرار داده شود.

واژه‌های کلیدی: ترسیب کربن، ارزش گذاری اقتصادی، عرضه اکسیژن، مدیریت و تهم.
مقدمه

به‌سیب بروز پدیده ازدحام گیاهی متنوع یکی از مسئله‌های ازبین‌رفته و جدی‌ترین دلایل کم‌ریزی در کلید و وضعیت آبیاری مهم اکوسیستم‌های طبیعی مثل جنگل و مرتع، ذخیره‌سازی انرژی بطور کبیر از طریق تربرین کردن است. افزایش تربرین کردن از مداوم افزایش بیوسیس گیاهی، افزایش تولید اکسیژن و بهبود حاصلخیزی خاک، افزایش طرفیت نگهداری آب در خاک و جلوگیری از فرسایش آبی و بادی است. بهبود تربرین کردن علاوه بر دادن ارزش‌های حفاظتی و پایداری به‌دلیل افزایش تولید بیوسیس، از نظر اقتصادی دارای ارزش است و طی مطالعات انسداد و سود اضافی حاصل از فعالیت‌ها و عملیات اقتصادی مربوط به افزایش تربرین کردن ممکن است.

کیفیت خشک از آغازین (با از Patagonia ۲۱۹/۲۵ دار در هکتار) (با از Inferior و ۲۷۱/۵ دار در هکتار) (معمولاً از سالنگ زمین در جهان ایجاد می‌کند و محصول طبیعی انگلیسی انجام‌شده است. کلیت‌های کلیت‌هایی از طریق مهارتهای زیست‌شناسی داده‌های است.

کاربرد اکوسیستم‌های مرتعی را با مصرف یک و ۲۳۵/۷ میلیارد تریلین کردن با کاهش می‌کند (۱۶). ۲۱ / ۴۰ برابر اکوسیستم‌های واقعی از اکوسیستم‌های جنگلی و مرتعی از توزیع گیاهان موجود در جهان مناسب است.

دانلند (۱۹۹۷) نیز میزان تربرین سالنگ کردن در منطقه وسیع آمریکا را (که اشکال‌های پایداری وایپریا، طبیعی به‌دست آمده از میان این اکوسیستم‌ها) ۲۸/۹ کلوئر در هکتار) (ارزش میلیون دلار در سال ارزش داریم که تقریباً ۷/۵ دور از ارزش اقتصادی نهایی اکوسیستم‌ها برابر با ۲۱۳/۵ هکتار از واقعی اکوسیستم‌ها، بازه و میانگین داده این اکوسیستم‌ها برابر با ۴/۸ میلیارد دلار در سال ارزش داریم که

2. UNDP
3. Ley and Sedjo
4. Calopedis

Carbon Sequestration
از ترضیب کربن در هنگار در منطقه مورد مطالعه را توسط گونه‌های گوناگون و توری‌گر از 143 دارا در برابر کردند. ارتقای همکار (2012) در مورد تحقیقی به ارزش‌گذاری تنشی در ترسیب کربن در اراضی کشاورزی اروپایی برداشت. نتایج آنها نشان داد که کل کربن ترسیب شده در واحدهای پشم 249/6 تا 249/7 تا 249/8 تریه تا کل تربی گونه‌های استان بود. این اثرکه کل کربن ترسیب شده در کل تربی گونه‌های استان مرکزی 17/6 میلیون دارا بود. برگردی موسوی (2011) در مطالعاتی در میانه‌های آب‌انبار تصفیه‌بندی‌های ارزشی اقتصادی تنظیم گزارشی را مورد بررسی قرار داد. نتایج وی نشان داد ارزش سایه‌گیری جنگ تربی گونه‌های سیستم‌های مرطوب حوزه طالقان میان دارای تربی گونه‌های بلوچیان بیان در سال سال، همچنین ارزش کارکرد تولید اکسیژن نیز بر اساس از روزهای روزن‌های کلینیکی بر اساس هریمین تولید اکسیژن منصف و پژوهشی را برای 9/99 میلیارد دارای یک مرحله در تحقیقی به بررسی ارزش خدمات اکوسیستم در پایه به نیازهای کارکرد در فلات لر از چن بودن. نتایج آنها نشان داد در منطقه مورد مطالعه از سال 1978 تا 1979 تون ارزش اقتصادی کارکرد حفاظت آب کاهش یافته است. ارزش اقتصادی پنی، ارزش و میزان عرضه اکسیژن به 90 درصد کل ارزش اقتصادی را بخود اختصاص داده‌اند. آنها باید کردند که به خوبی سیستم‌ها از زمین را از آنها برای انتقال به حفاظت از این کارکرد را به این اقتصادی از ایاکسیژن را. اثرات زمینه تجهیزات و بازیابی ارزش تجهیزات نتیجه‌گیری آنها انجام شود. احتیاج به و همکاران 5. دانشگاه تهران (2013) در مطالعات ارزش اقتصادی کربن ترسیب شده در خواص توسط گونه‌های کارکرد، توری‌گر از در مراورد نه در استانگستان مرطوب‌بررسی قرار داده‌اند. نتایج آنها نشان داد که مرطوب‌بندی گونه‌های تحت تنش و توری‌گر از مقایسه با منطقه شاهد حدود 5/4 تن کربن بیشتر ترسیب می‌کند. آنها ارزش اقتصادی حاصل

1. Jing and Zhiyuan
2. Loess
3. Net primary productivity

References:
4. Aertsens
5. Dong
مواد و روش‌ها
منطقه مورد مطالعه
حوزه آب‌یابی تهم با مساحت ۱۶۲۸٫۶/۳ هکتار در استان زنجان، در شهرستان زنجان قرار دارد. حوزه آب‌یابی تهم از سراسر حوزه آب‌یابی زنجان شمالی و در موقعیت جغرافیایی بین ۴۸° تا ۲۷° و ۲۸° تا ۱۷° عرض شمالی و طول شرقی و ۳۶° تا ۳۵° و ۵۳° تا ۵۲° جغرافیاً واقع شده است (شکل ۱). ارتفاع متوسط حوزه ۲۳۰۰ متر، جدای از ارتفاعات ۸۹۸ متر و جدای ارتفاعات در خروجی حوزه برای ۱۹۵۰ متر از سطح دریا می‌باشد. مرکز عمدی جمعیت حوزه عبارت از روستاهای تهم، خشک‌رود، گل‌رود و طاهرآباد.

همیلت ترسیب کربن و عرصه اکسیژن در سطح جهانی و با توجه به اینکه مراکز سه‌فرنی قصباتی از سطح کشور را در بر می‌گیرد ضروری است، میزان تنظیم گازهای کربن و اکسیژن در مراکز مورد ارزیابی قرار گیرد. تا پیشینه این افراد به برآوردی اولیه از میزان ترسیب کربن و تولید اکسیژن گونه‌ها مورد دریافت گرفته‌اند. در این استان پیمان کوبن، به عنوان اثر عوامل انسانی در میزان کربن ترسیب شده و اکسیژن ترسیب شده در این اکوسیستم‌ها را برای تصمیم‌گیری در مرحله کشور تعیین کرد. بنابراین، با توجه به همیلت و حساسیت موضوع نگرفته گیاهی و گراشیرشکنی در اکوسیستم‌ها و اکوسیستمیون می‌توان به تعیین کمی کارکردهای اکوسیستمی گونه‌های مربوطی و نیز ارزش گذار آن‌ها از نظر آب و جنگل‌های بود. بنابراین هدف از این تحقیق تعیین ارزش اقتصادی کارکردها تنظیم گازهای تهیه خوراکی از جمله مکانی که در مراکز حوزه تهم بود.
روش تحقیق:

ویژه‌ترین اثرات اقتصادی کارکرد اکوسیستم‌های خشکی در ذهن کریم و عرضه اکسیژن معمولاً از سوی روش فرول فتوستانت و نفس، مطالعات و اندازه‌گیری‌های تجربی و الگوی‌های رایج استفاده می‌شود.
(23) 7, 37 و 44. در این تحقیق از روش اندازه‌گیری تجربی و فروم فتوستانت برای برای مقایسه جذب و ذخیره کردن و عرضه اکسیژن استفاده
شده.

همچنین روش معمول مبتنی بر درک و دقت ترین روش برای اندازه‌گیری روش سالمه گیاهان صورت می‌گیرد و دقتی ترین روش برای
اندازه‌گیری روش سالمه گیاهان گیاهان قطع و توزین می‌باشد.

متأسفانه، قطع و اندازه‌گیری تعداد کافی از گیاهان که

نشان دهنده اندازه و پراکنش گونه‌ها در یک اکوسیستم

باشد بسیار بی‌پایت، وقتی گیری، مخرب و حالش کننده بوده و

به نیروی کارگر فراوانی نیاز دارد. علاوه براین، روش‌های

مبتی بر قطع 1 مربوط به مساحت و مطالعات بند‌بندی و

پژوهی‌های حفاظتی اکنون بی‌پایت نیست. بنابراین در این

برای تحقیق مبتنی بر روش سالمه پوشش گیاهی در

مناطق معرف در سطح ویژه‌های مربوطی از روش

نیز استفاده شد. بر این اساس با استفاده

پالات یک متریبری (پرس تغییرات پوشش گیاهی,

<table>
<thead>
<tr>
<th>کشورهای تکثبری</th>
<th>سرمایه‌گذاری</th>
<th>درصد</th>
<th>سال</th>
<th>گیاهان</th>
<th>میزان</th>
<th>تعداد</th>
<th>ترتیب</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. MacDicken</td>
<td></td>
<td></td>
<td></td>
<td>یافته‌های کلی</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Destructive</td>
<td></td>
<td></td>
<td></td>
<td>یافته‌های کلی</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
پایه آتش اقتصادی کارکرد تنظیم گازها در اکوسیستم‌های مزمنی حوزه آبی

بر این اساس برای تعیین ضریب تبدیل ترسیب کربن آلی اندام‌های هوایی و بی‌زیستی 100 نمونه دو کمی از هر گیاه وزن و به مدت 24 ساعت در دمای 37 درجه سانتی‌گراد در کوره قرار داده شد. نمونه‌هایی که به فرم خورده و با تعیین وزن خاک و با در دست داشت وزن اولیه و نسبت کربن آلی به مواد آلی در اساس رابطه (1) میزان کربن آلی در هر کیلومتر از نمونه محاسبه شد.

\[OC = 0.5 OM \]

رابطه 1

که درصد کربن آلی و نیترژن درصد مواد آلی

با است. رابطه گویای آن است که به جای از خاک را کربن آلی و نیترژن را از سایر عناصر تشکیل می‌دهند. در نهایت پس از انجام مطالعات مربوط، تجزیه و انجام محسوس در محیط‌های هر اکوسیستم 2010. پس تعیین میزان کربن آلی بر اساس مطالعه عاطفی که به شوری (4) نسبت وزنی دی‌اکسید کربن به کربن 3/76

می‌باشد، میزان دی‌اکسید کربن جذب‌کننده تعیین شد.

در این مطالعه همچنین از فرمول فتوسنتز (20) و (27) به‌منظور پایداری میزان استفاده کربنی اکوسیستم مرطع استفاده گردید. گاه‌ها در جریان عمل فتوسنتز ارزو را از منبع خورشیدی برای نیروهای و ترکیبات غیرآلای مانند آب و گاز ذی‌اکسید کربن را به ترکیبات آلی تبدیل نمی‌کنند. با پایداری میزان تولید خالص و استفاده از فرمول فتوسنتز میزان ذی‌اکسید کربن جذب‌کننده و اکسیژن تولیدشده محاسبه شد.

رابطه 2

\[6\text{Co}_2(264\text{g}) +6\text{H}_2\text{O}(108\text{g}) \rightarrow \text{C}_6\text{H}_12\text{O}_6(180\text{g}) +6\text{C}_2(193\text{g}) \]

\[\rightarrow \text{Polysaccharide}(162\text{g}) \]

با توجه به رابطه (2) گونه‌های می‌گذاری اکوسیستم

مرطع برای تولید 162 گرم ماده خشک و 196 گرم اکسیژن. 246 گرم ذی‌اکسید کربن و 18 گرم آل جذب می‌کند (20) و (27). البته رقم 193 گرم اکسیژن برای پوشش‌های است که در شرایط مطلوب به سر میرود و برای شرایط ایران، یخ‌شکنی (1977) رقم 191 گرم اکسیژن را پایدار نموده است. به عبارتی برای تولید یک

\[1\text{Carbon Tax Policy} \]

\[2\text{Fankhauser} \]
نتایج
میزان روش اندازه‌های هواپی و ژئرومای سالانه کهای‌مان تیپ‌های مختلف برآورد شد که نتایج آن در جدول 1 مشاهده می‌شود. برس اساس نتایج بدست آمده در هر هکتار از اکوسیستم‌های مرتعی منطقه بهطور متوسط سالانه 19 تن دکسید کربن (0.15٪ تن کربن) جذب می‌شود. میزان جذب کربن در مراکز منطقه 749688 تن در سال برآورد گردد. مقداری بین تیپ‌های مختلف نشان می‌دهد بیشترین میزان کربن جذب‌شده در

جدول 1: مقادیر سالانه جذب کربن و دیکسید کربن در تیپ‌های مرتعی حوزه آب‌خیز تهم

تیپ‌های مرتعی	کربن جذب‌شده (تن)	کربن غیاب‌شده (تن)	بار النوع (کربن)	کربن جذب‌شده بار النوع (تن)
---------------	-----------------	-----------------	---------------------------
As.mi-Ac.sq-Ag.li	18948	19154	1988	19154
As.mi-Ag.li	27862	27862	1988	1988
As.mi-Fe.ov-Br.to	1770,7	1770,7	1988	1988
As.mi-St.ba	12472	12472	1988	1988
Fe.ov-As.mi-Br.to	34048	34048	1988	1988
جمع	673132	673132	1988	1988

بر اساس نتایج بدست‌آمده در هر هکتار از اکوسیستم‌های مرتعی منطقه بهطور متوسط سالانه 15/6 تن آکسیژن تولید می‌شود. میزان تولید آکسیژن در منطقه 2155549 تن در سال برآورد گردد. مقداری بین تیپ‌های مختلف نشان می‌دهد که بیشترین میزان آکسیژن تولید‌شده در هکتار مربوط به تیپ As.mi-Fe.ov-Br.to

جدول 2: مقادیر سالانه تولید آکسیژن در تیپ‌های مرتعی حوزه آب‌خیز تهم

<table>
<thead>
<tr>
<th>تیپ‌های مرتعی</th>
<th>میزان تولید سالانه آکسیژن (تن)</th>
<th>تولید سالانه آکسیژن (تن)</th>
</tr>
</thead>
<tbody>
<tr>
<td>As.mi-Ac.sq-Ag.li</td>
<td>18948</td>
<td>18948</td>
</tr>
<tr>
<td>As.mi-Ag.li</td>
<td>27862</td>
<td>27862</td>
</tr>
<tr>
<td>As.mi-Fe.ov-Br.to</td>
<td>1770,7</td>
<td>1770,7</td>
</tr>
<tr>
<td>As.mi-St.ba</td>
<td>12472</td>
<td>12472</td>
</tr>
<tr>
<td>Fe.ov-As.mi-Br.to</td>
<td>34048</td>
<td>34048</td>
</tr>
<tr>
<td>جمع</td>
<td>673132</td>
<td>673132</td>
</tr>
</tbody>
</table>
مقدار متفاوتی را به عنوان ارزش کربن مانند قرار داده‌اند که با این‌باره به برخی از این تحقیقات، قسمت سایه‌ای معنی‌دار به منظور انجام محاسبات اقتصادی انتخاب می‌شود.

در این تحقیق به منظور تعیین ارزش کارکرد ترسبی کربن با استفاده به مطالعه فنی‌خزر (۱۹۹۴)، رقیم ۲۵۳ دلار بر تن به‌عنوان ارزش سالانه کربن در سال ۱۳۹۱ مانند فرارگرده و بر اساس آن، ارزش کارکرد ترسبی کربن در منطقه در ترسبی کربن محاسبه می‌گردد، که نتایج آن در ۲۳ آبان‌شده است.

جدول ۲- ارزش سالانه کارکرد ترسبی کربن در مراتب تهیه

<table>
<thead>
<tr>
<th>ارزش کربن جدید‌شده سالانه (برحسب میلیون ریال)</th>
<th>کل کربن جدید‌شده سالانه (میلیون)</th>
<th>سمحت (میلیون)</th>
<th>تیپ‌های مربوطی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۰۸۷/۹</td>
<td>۲۴۷۹/۹</td>
<td>۹۶۷/۷</td>
<td>As.mi-Ac sq-Ag.li</td>
</tr>
<tr>
<td>۷۸۹/۷</td>
<td>۳۴۴/۷</td>
<td>۲۵۳۷</td>
<td>As.mi-Ag.li</td>
</tr>
<tr>
<td>۳۸۷۹/۶</td>
<td>۲۹۷۱/۶</td>
<td>۱۱۵۵/۶</td>
<td>As.mi-Fe.ov-Br.to</td>
</tr>
<tr>
<td>۹۱۷/۷</td>
<td>۱۷۷۷/۷</td>
<td>۶۴/۷</td>
<td>As.mi-St.ba</td>
</tr>
<tr>
<td>۴۱۳/۳</td>
<td>۴۵۳/۸</td>
<td>۲۱۸/۳</td>
<td>Fe.ov-As.mi-Br.to</td>
</tr>
<tr>
<td>جمع</td>
<td>۳۲۶/۵</td>
<td>۳۷۲۸/۵</td>
<td>۱۹۸۴/۵</td>
</tr>
</tbody>
</table>

بر اساس نتایج ارائه‌شده در جدول ۲، ارزش سالانه جذب کربن توسط تیپ‌های مربوطی حوزه تهیه برابر با ۲۵۹/۵ میلیون ریال بر تن است. بر این‌ساس، ارزش اقتصادی سالانه کارکرد تولید اکسیژن توسط اکوسیستم‌های مربوطی حوزه تهیه برابر با ۷۸۸/۵ میلیون ریال و در هر هکتار از این مراتب برابر با ۷۸۸/۵ میلیون ریال برابر شد (جدول ۲).
بر اساس نتایج به‌دست‌آمده در قسمت قبل، مجموع ارزش اقتصادی کارکرد تنظیم‌گاز در مراتع حوزه آبخیز ۲۴۱۹۸/۹ میلیون ریال و تولید آب‌سیرن در کل نیب‌های منطقه برابر با ۱۳۱۰۸/۸ میلیون ریال و در هکتار با ۹۵۰ هزار ریال در سال برآورد شد. این رقم چشمگیر و قابل توجه است. فقط ارزش یکی از خدمات اکوسیستمی در مراتع حوزه آبخیز تهیه می‌باشد.

جدول ٥- ارزش اقتصادی تنظیم گاز در مراتع حوزه آبخیز تهیه می‌باشد.

<table>
<thead>
<tr>
<th>ارزش اقتصادی (هکتار)</th>
<th>مجموع ارزش تنظیم گاز (میلیون ریال)</th>
<th>ارزش تولید آب‌سیرن (میلیون ریال)</th>
<th>مساحت (هکتار)</th>
<th>نیب‌های مرتعی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>As.mi-Ac.sq.Ag.li</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>As.mi.Ag.li</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>As.mi-Fe.ov-Br.to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>As.mi-St.ba</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fe.ov-As.mi-Br.to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>جمع</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۱۲۴۲/۵ ۱۲۴۲/۴ ۱۰۷۷/۵ ۲۲۵۵/۳ ۱۲۹۹/۵</td>
</tr>
</tbody>
</table>
برآورد ارشد اقتصادی کارکرد توزیع گازها در اکوستیشهای مرئی حوزه‌ای... (2011)

نیز میزان تولید اکسیژن توسط مرتع‌ها در منطقه طالقان میایی، حدود 8/۰۷ در هکتار برآورد می‌شود. در این رابطه، بکثری پوشش گیاهی و تولید در محل واقع مزرعه و مواد زراعی محصولات می‌باشد. بر اساس تحقیقات صورت گرفته در 1656 هکتار اکسیژن تولید شده، برای نیاز سالانه ۸۶۹۷/۱ میلیون ریال در سال به مبنای نیاز اکوستیشهای منطقه توزیع اکسیژن به ترتیب کرم 24 هفته 3/۵ هفته در هکتار برآورد شد. بر اساس مطالعات و روش انجام محاسبات جستجو کرده، در پیش‌تر مطالعات انجام همکاری و همکاران (۲۰۰۹) به منظور محاسبه کریستال ذخیره‌شده در کل بیوماسه‌های محیط قرار گرفته و در این مطالعه حاضر کردن ترکیب شده در روش سالانه گیاه منظور قرار گرفته است.

مقایسه بین تیپ‌های مختلف نشان داد، میزان کربن جذب‌شده در هکتار پیش‌ترین میزان مربوط به تیپ As.m-fEb-Br.to می‌باشد. در این رابطه، بهترین نتایج در پیش‌ترین میزان ترکیب کرم از تیپ‌های گیاهی می‌توان از جمله شهود، تراکم و ساختار گوناگونی گیاهی و عامل محیطی مختلف متغیر مبتنی بر دسته‌بندی پیشنهادی و روستای طبیعی و تبدیل‌گرایی سطحی تحت جریان ساختن دام قرار داده و از لحاظ ترکیب کرم در یک از نسبت به فیزیک‌های قرار گرفته است. این موضوع به نظر می‌رسد که مستقیم چرا در کاهش پوشش گیاهی و در ادامه نش خود اکوستیشهای منطقه با درمان کردن گیاه و در طبیعت می‌باشد. (۲۰۰۸) مطالعات نشان داده که این نشان با داشت همچنین کرسک (1997) بانک‌های اکسیژن در یک فصول ۲۰۶۳/۸۳ بر روی ترکیب کرم تائیدگر این

در این مطالعه ملاحظه گردید که توزیع کرم ذخیره کردن در روستای سالانه‌های هواپی، پیش از به‌ره‌ی بوده است که با نتایج مطالعات بکثری و همکاران (۲۰۰۵) و آرادوی و همکاران (۲۰۰۷) مطالعات دارد. در هکتار از اکوستیشهای مرئی منطقه مبتنی بر طور و دسترسی ۱/۵ تاکستان تولید می‌شود. میزان تولید اکسیژن توسط اکوستیشهای مرئی به ترتیب ۱۰۷/۴۶۸ میلیون ریال در سال
ارتباط با انجام ارزیابی مکان‌دار و دقیق می‌کند که این در مجموع ارتباط جویه‌ای اخیر تیم سالم انرژی ارزی

در مجموع روابط محورهای بیشتر تهم سالانه ارزی

۹۵۰ هزار ریال در سال در هکتار (۱۲۰۰ میلیون ریال) از ارتباط کارکرد تنظیم گازهای دارد. حال اگر ارزی

تنظیم گازهای را با علوفه تولیدی کل مراجع متوقفه (که

برابر ۱۹۵۰ میلیون ریال در سال می‌باشد) مقایسه کنیم

بیش از پیش به ارزش اقتصادی تنظیم گازهای پی برد

می‌شود. بازاریابی مدیریت اکوسیستم‌های مرغی به‌طور

به‌دیدات شد که ضمن در نظر گرفتن اقتصاد

رژیم‌های سلبی مراجع به عملکرد و توان اکولوژیکی آن نیز

بود. در سیاست‌های ارائه‌های، ترسیم کردن، بعنوان

ارزیابی فرآیند بار پروژه‌های اصلاح، احیاء و مدیریت

عرضه‌های منابع طبیعی در نظر گرفته می‌شود. کارکسر و

مکانک (۱۹۹۴) معتقدند که مدیریت جامع جنگلی

معادل ترسیم کردن، تسویه یا پایدار و حفظ تنوع زیستی

است؛ در مورد مرتع و سایر اکوسیستم‌های طبیعی نیز

می‌توان این فهم‌ها را تعییم داد. عمدی و همگران

(۲۰۰۵) معتقدند با بستی در متنوع علمی مرتعی و

منابع طبیعی، ترسیم کردن و تولید اکسیژن بعنوان یکی

از ارزش‌ها و تولیدات مرتع و منابع طبیعی در کار

استفاده‌های زیست‌شناسی‌ای مانند تولید علوفه، کاهش

دارویی، محصولات فرعی، چراز دام و حیات وحشی، تنوع

زیستی و استفاده‌های تفریحی که گنجانده شود.

کارکرد اکوسیستم مرتع از انتظار تنظیم گازهای که از

یواندهای غیر محیطی و با حیات غیر محیطی برخوردار بوده و

فوارد ناشی از حفظ اکوسیستم‌های مرتعی که با تنظیم

گازهای حیاتی و جلب‌کردنی از مشکلات مربوط به گرم

شند که زمین و افزایش انتشار گازهای گلخانه‌ای سوکار

دارد. در این مورد اقیانوسیون، فشار و محسابات اقتصادی

آن نیز از عوامل به‌سرعتی با استناد به

پیروی می‌کند. از این رو محسابات مربوط به با استناد به

ارزش‌های برآورده در سطح فراملی پایه‌ریزی می‌شود.

اطلاعات مکان‌دار در رابطه با ارزش کارکرد تنظیم گازهای

کمک شاپه‌ای به برنامه‌ریزی و تصمیم‌گیری اولتیماترس در

۱. Cairns and Meganck
References

18. Fankhauser, S., 1994. A point estimates of the estimates of the economic damage from Global Warming. Center for social and economic researches on the global environment.CSERGE Discussion paper 92, University of East Anglia and University College London

41. UNDP., 2000. Carbon sequestration in the desertified rangelands of Hossein Abad, south Khorasan, through community based management. program coordination, 1-7