بررسی اثر غلظت‌های مختلف نانوژره دی اکسید تیتانیوم بر جوانه‌زی و رشد اولیه 5 گونه مرتعی

نادیا کمالی 1 و احمد صادقی 2

تاریخ دریافت: 1392/09/23 - تاریخ تصویب: 1394/02/26

چکیده

تحقیق حاضر به منظور بررسی اثر غلظت‌های مختلف (0.01، 0.1، 5، 50 و 150 میلی گرم بر لیتر) نانوژره اکسید ناتویی Salsola rigida، Eurotia ceratoides، Nitraria schoberi، Halothamnus glaucus و Kochia prostrata، که به‌عنوان گیاهان کاوشی در اراضی مرتعی مورد استفاده قرار گرفته انجام گردید. نتایج نشان داد که غلظت 500 میلی گرم بر لیتر نانوژره دی اکسید تیتانیوم نه تنها اثر منفی بر گیاهان نداشت بلکه باعث افزایش میزان جوانه‌زی و رشد اکسید در 28 روز جوانه‌زی به 51 روز و 48 روز (از 50% درصد به 65% درصد) K. prostrata از 68 روز جوانه‌زی به 56 روز (از 62% درصد به 85% درصد) E. ceratoides و 68 روز جوانه‌زی به 85 روز (از 62% درصد به 85% درصد) بهبود یافت. نتایج نشان داد که غلظت 1500 میلی گرم بر لیتر اثر منفی بر جوانه‌زی و رشد اکسید در نانوژره اکسید اکسید (K. prostrata) 28 روز جوانه‌زی به 20 روز (از 72% درصد به 78% درصد) K. prostrata و 68 روز جوانه‌زی به 63 روز (از 78% درصد به 85% درصد) E. ceratoides و 68 روز جوانه‌زی به 56 روز (از 85% درصد به 95% درصد) مانند اکسید K. prostrata را با ایجاد سمیت موجب کاهش جوانه‌زی و رشد گیاهان شد، بنابراین این در کاربرد نانوژره، توجه به میزان مصرفی که هم موتور باشد و هم سمیت ایجاد تکنیک‌سازی حاصل اهمیت است.

واژه‌های کلیدی: نانوژره اکسید تیتانیوم، Kochia prostrata

1- دانشجوی دکتری مرتعی، دانشکده منابع طبیعی، دانشگاه تهران
2- استاد دانشکده کیور شناسی، دانشگاه سمنان
a.sadeghipour@profs.semann.ac.ir

1394/1706/0720
قلمه

فاواور نانو بر بهبود عملکرد گیاهان برای جذب مواد غذایی، بهبود کوداتوین، تولید گیاه، دفع آفات و امراض گیاه، ایجاد پرسبورگ گیاه و غیره تأثیر دارد. میزان جذب تانهوذات توسط گیاهان مختلف بوده و بستگی به نوع گیاه، تکریم شیمیایی و اندازه این ذرات دارد (24 و 25) و نخستین مطالعه در مورد اثرات تانهوذات بر روی گیاه میرم گلی صورت گرفت (11). اثرات ضد و تقویتی از تانهوذات نانوهای مختلف بر روی گیاهان گرایش شده است (21).

1. نانوهای گیاهی در گیاه اسفاج همبستگی زیادی و جو و دارکه، که می تواند به دلیل بهبود جذب نور، انقلاب و تبدیل انرژی نور و یا ارزش غلیظ انرژی را فراهم کند در حضور این نانوهذ شده در حضور این نانوهذ مشاهده شد (17). نانوهای تانهوذات پس از جذب محیط و افزایش انرژی بهبود این گیاهان در حضور این نانوهذ مشاهده است (15). آن گیاهان مختلف احساس می شود، تحقیق حاضر به منظور بررسی اثر نانوهای تانهوذات بر گونه مرتینی که در عملیات اصلاحی مراتع دلایل اهمیت به پژوهش صورت گرفته.

مواد و روش‌ها

به منظور بررسی اثر مختلف نانوهاذ صفر، 100، 200 و 150 میلی گرم به لبر نانوهای گیاهان سالسولا ریگیدا انتخاب گیاهان و محل تلاقی آزمایش محتوای مختلف از جمله فیبری و همکاران (2013) و (2014) بوده است (بر جای وزنی، رشد رشته و ساقه)。

Eurotia Nitraria Schoberti (4) و Halothamnus Salsola Riga Ceratoides (5) گونه مرتبطی از Potentis سالسولا ریگیدا انتخاب گیاهان (Kochia Prostrata Glauces) بر پایه طرح کاملاً تصادفی با 3 بذر تکرار صورت گرفت. بذر گیاهان مربوط به گونه متغیر بود.

4- Feizi
5- Samadi

1- Anatase
2- Rutile
3- Brucite
کوکیا پروسترا (Kochia prostrata)

در خاک‌های شمالي به نیازهای رشد پایدار، بذر
کوکیا پروسترا تخم‌انگیز کننده بوده و بذر
گلوکسیم گردنگی ندارد. US-NANO

کواریکی اکسبنتان این بذر برای صنایع
آمریکایی می‌باشد. خصوصیات تاندونه تنه در جدول

این روش است. تصویرگرکننده الکترونی عبوری

پودر دی‌کسید بذرها توسط دستگاه TEM

ساخت Hitachi شرکت زاین تهیه گردید (شکل 1 و 2). به‌منظور

تهیه محلول نانوزنان دی‌کسید بذرها با غلتک

۱۰۰، ۲۰۰، ۴۰۰، ۵۰۰ و ۱۵۰۰ میلی‌گرم بر لیتر، ابتدا مقدار مشخص

پودر نانوزدان دی‌کسید بذرها در یک لیتر آب ریخته و برای

تهیه سوسپانسون یک‌خاکت به‌دست ۳۰ دقیقه در

هموتوناژی‌سازی تزریق قرار داده شد. قبل از استفاده از

محلول از همزن‌های مغناطیسی جهت جلوگیری از تجمع

احتمال ژرات استفاده شد. به‌منظور بررسی قابلیت حیات

بذرها از نمودار کلمی استفاده شد. بذرها تهیه شده با

محلول هیپوکلریت سدیم به‌دست دو دقیقه به‌طور سطحی

سفید و سبز با آب مکروتر سه بار شستشو داده شدند.

همچنین به‌منظور استریل بذرها مورد مطالعه و

جلوگیری از آلودگی‌های قارچی‌بذرها با قارچ‌کش

کربوکسیل تیتر در نهار ضدعفونی شدند. از

پتریدیش‌های ۸ ساعت متری که توسط آنتول ۲۰ درصد

ضدکاری شده بودند و کافی صافی و خامه‌ای شماره ۱

استریل به عنوان استریل بذر استفاده شد. بعد از قرار دادن

بذرها در پتریدیش‌ها و افزودن محلول تهیه شده، نمونه‌ها

در دستگاه زمین‌نورد (دما ۲۲ ± ۲ درجه

سانتی‌گراد بر پرورد ۱۶ ساعت روشنایی و ۸ ساعت تاریکی

با رطوبت ۷۰ درصد) قرار داده شده و جهت جلوگیری از

تخبیر، پتریدیش‌ها بارا برایم سه‌ساعت سنگرد شدند. ملاک

جوانزی خروج ۱ تا ۲ میلی‌متر ریشه‌چه بود (هارديگری

6- Hardegree and Van Vactor
7- Copland
جدول 1- مشخصات نانوذرات دی اکسید تيتانیوم

<table>
<thead>
<tr>
<th>اندکار نانوذر</th>
<th>سطح نانوذر</th>
<th>شکل نانوذر</th>
<th>درصد خلوص</th>
<th>شکل نانوذر</th>
<th>نانوذرات دی اکسید</th>
<th>تحریم</th>
<th>تیتانیوم</th>
</tr>
</thead>
<tbody>
<tr>
<td>240 گرم بر مریخ</td>
<td>300 گرم بر مریخ</td>
<td>پوست سفید</td>
<td>099 درصد</td>
<td>مکعب</td>
<td>400-100 نانومتر</td>
<td>250-350 نانومتر</td>
<td>تیتانیوم</td>
</tr>
</tbody>
</table>

شکل 1- تصویر میکروسکوپ الکترونی غیر وابسته نانوذرات دی اکسید تیتانیوم

شکل 2- تصویر میکروسکوپ الکترونی غیر وابسته نانوذرات دی اکسید تیتانیوم
نتایج

بررسی نتایج جدول تجزیه واریانس نشان داد که در بین این گونه‌ها انواع مختلف نانوژراتهای دیاکسید تیتانیوم بر گونه‌های مختلف دارند که در بین

جدول ۲- تجزیه واریانس درصد نانوژراتهای دیاکسید تیتانیوم تحت تأثیر انواع مختلف نانوژراتهای دیاکسید تیتانیوم

<table>
<thead>
<tr>
<th>گونه</th>
<th>میانگین مقیاس</th>
<th>دارند</th>
<th>شرجه آزادی</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. schoberi</td>
<td>117</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>E. ceratoides</td>
<td>59</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>S. rigida</td>
<td>21</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>H. glaucus</td>
<td>44</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>K. prostrata</td>
<td>59</td>
<td>2</td>
<td>10</td>
</tr>
</tbody>
</table>

نتایج تحقیق نشان داد غلظت های مختلف نانوژراتهای دیاکسید تیتانیوم اثر منفی بر گونه‌های مختلف دارد. درصد غلظت ۴۰۰ میلی گرم بر لیتر (این نانوژرده باعث افزایش درصد جوانه‌زیهای ۲۸ درصد به ۲۰ درصد می‌گردد) باعث کاهش جوانه‌زیهای گیاه به ۱۲ درصد به ۶ درصد می‌گردد (شکل ۳). در غلظت ۱۰۰۰ میلی گرم بر لیتر (این نانوژرده نامناسب دیاکسید تیتانیوم بر گیاه موثر است و افزایش جوانه‌زیهای گیاه به ۱۲ درصد به ۶ درصد می‌گردد (شکل ۳).
شکل 4 - تأثیر نانوذرات دی اکسید تیناتیوم بر درصد جواندنژی

شکل 5 - تأثیر نانوذرات دی اکسید تیناتیوم بر درصد جواندنژی

شکل 6 - تأثیر نانوذرات دی اکسید تیناتیوم بر درصد جواندنژی

N. schoberi

K. prostrate

H. glaucus
جدول ۳- تجزیه واریانس رشد ریشه‌چه گونه‌های مورد بررسی تحت تأثیر عضلات‌های مختلف نانوذرات در یکسید تیتانيوم

<table>
<thead>
<tr>
<th>عضله</th>
<th>رشد ریشه‌چه</th>
<th>سالنامه</th>
<th>میانگین میزان رشد سالنامه</th>
<th>درجه ارزیاده</th>
<th>گونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. schoberi</td>
<td>۴۷۴۴</td>
<td>۱۹۳۴</td>
<td>۴۳۴۳</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. ceratoides</td>
<td>۸۰۰۰</td>
<td>۱۸۳۴</td>
<td>۸۳۸۸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. rigida</td>
<td>۱۰۹۸</td>
<td>۱۰۹۸</td>
<td>۱۰۹۸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. glaucus</td>
<td>۱۲۸۱</td>
<td>۱۲۸۱</td>
<td>۱۲۸۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. prostrata</td>
<td>۱۶۸۳</td>
<td>۱۶۸۳</td>
<td>۱۶۸۳</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

نتایج نشان داد نانوذرات دی-یکسید تیتانيوم بر رشد K. prostrata میتری کاهش یافته است (شکل ۸ و ۹). نتایج جدول تجزیه واریانس نشان داد غلظت‌های مختلف نانوذرات در یکسید تیتانيوم بر رشد سالنامه‌های هیچ‌کدام از گونه‌های مورد بررسی تأثیر ندارد (جدول ۳).

شکل ۷- تأثیر نانوذرات دی-یکسید تیتانيوم بر رشد ریشه‌چه E. ceratoides

متنی در سطح ۰/۰۱
بحث و نتیجه‌گیری
مطالعه اثر غلظت‌های مختلف نانوژد کسید تیتانیوم بر گونه‌های مختلف ناشان داد که نانوژد غلظت‌های مختلف این نانوژد و گونه‌های مختلف، همچنین در مرحله مختلف رشد گیاه متفاوت است. از E. N. schoberi و K. prostrata مطالعه سه گونه بیش از سایر گونه‌ها، تحت تاثیر نانوژد کسید تیتانیوم قرار گرفتند. که نشان دهنده قدرت این نانوژد در ورود به پرورش و رشد ایجاد کرده و بیش از سایر گونه‌ها، تغییر در درصد جوانه‌زی و رشد رشدی بیشتر بیافزایید. مقاومت به نانوژد کسید تیتانیوم در مرحله سلمند گیاهان اولین سطح زندگی در طبیعت است. بررسی تأثیر غلظت‌های مختلف نانوژد کسید و نانوژد کسید در مرحله سلمند گیاهان اولین سطح زندگی در طبیعت می‌باشد، که نتایج آن‌ها ناپویا بسیاری از آن‌ها می‌باشند.
موجودات زندگی را به دنبال دارد، از طرفی برخی مقاله‌ای این نتایج افراشی جوان‌زادی در گیاهان را به
دنبال دارد که می‌تواند به عنوان نیم‌انداز افراش‌دهنه قدرت گولد نهاد کسی را در گیاهان.
تیتانیوم و رشد رشته‌های در گیاهان وجود بررسی را تحت نمای قرار داد. ولی رشد سالانه‌اش از طبق
استعمل مستقیم، اثرات تصادفی، روشنایی و شکاف‌های
آلوده و یا مواد انسانی به گیاهان سیبی و اثرات
منفی معمولا را بر روی گیاهان و زنجیره‌های غذایی
عمل می‌کند (تا 28) که محققان باید حذف
استفاده‌دیده، حذف تغییر گلبت مجزا ناتوان‌های مختلف در
طبیعت را تعمیم کند. بررسی انسداد تیتانیوم
تیتانیوم و رشد و توسط گیاهان، توسط محکم
مختلف اثرات متفاوتی مشاهده شده است. استفاده از
ناتوان‌های تیتانیوم افراش جوان‌زادی رشد و توسط
دبایر را در گیاهان را به همراه دارد. به اعمال
حضور یا موجب تسریع تبدیل نیتروزن معدنی به
نیترژن آلی شده و وزن خشک و ن انرژی را بالا
برد. یا حضور آن به صورت معمولی ناتوان افراش
جوان‌زادی در گیاهان مختلف را به دنبال دارد (۴۴).
قرار‌گیری بذر غلظت می‌گذاری در معرض ۶۰ میلی‌گرم
بر لیتر این نتایج کسی را به افراش‌دهنه
ساعت طولی جوان‌زادی بذرها شده در حالیکه غلظت‌های
پایین تاثیر بر سعت جوان‌زادی بذرها نداشته است
(۴). اساس‌ها در دست گولد نهاد تحت تاثیر ناتوان‌های
گونه‌های مرغ برزیس (مخصوصا ۵۰۰ میلی‌گرم بر
لیتر) می‌تواند اثر منفی داشت اگر خاصیت
است. برخی مطالعات سرمایه‌گذاری نشان دهنده که
رشد رشد گیاهان می‌باشد (۱۹ و 7) که در مطالعه
حاضر نیز کاهش رشد رشته‌ها (غلظت ۱۵۰۰
میلی‌گرم بر لیتر) احتمالاً تبدیل انسداد سلول‌های رشد
با این نتایج همخوانی دارد. اثر سرمایه‌گذاری شده توسط
این ناتوان‌ها می‌تواند تاثیب انسداد سلول‌ها و

1. Seeger
References