پرسی تأثیر سولفات مس بر صفات جوانه‌زی و ساختار تشريحي اندام‌های رويشي شيردارک

(Melilotus officinalis L.)

فاصله زاد حبيب‌پور، 1 مرده دانشگر، 2 آيدين صادقي

تاریخ دریافت: 1395/09/15 - تاریخ تصويب: 1396/03/30

چكيده

مس یک عنصر رژيمي گياه است، به گوناگان که كمبود آن متابوليسم گياه را تحت تأثیر قرار مي‌دهد. مقدار زياد مس باعث ايجاد سميت در گياه از طريق ايجاد گونه‌هاي فعال اكسيزين مي‌شود. پژوهش حاضر بهمنظور بررسی اثر سطوح مختلف سولفات مس بر جوانه‌زی بذور و ساختار تشريحي شيردارک در قابل طرح یاهمان تصادفي انجام پذيرفت. نتایج درآمده در اين آزمایش شامل سطوح مختلف سولفات مس با غلظت هاي صفر (تيمار شاهده)، 0.4 و 7 ميلي گرم در لير بود. نتایج نشان داد كه درصد جوانه‌زی و سرعت جوانه‌زی در سطح 5 درصد معنی دار نبود و اما طول ساقچه و ريشه‌چه، وزن ساقچه و ريشه و انسحابات ريشه گرديرد. در برگ‌ها افزایش سطوح سولفات مس ضخامت مزيدی برگ کاهش یافت. کمترین ضخامت مزوقيل برگ در ثامبر 7 ميلي گرم در كيلوگرم سولفات مس یافت شد (237/2). در برگ‌ها افزایش غلظت سولفات مس، ضخامت پارتشیم، اوند آبکش و وند چوي کاهش پیدا كرد. کمترین مقدار ضخامت پارتشیم، اوند آبکش و وند چوي در ثامبر 7 ميلي گرم در كيلوگرم سولفات مس مشاهده شد (179/2). (33/0 و 15/2 ميکرومتر). نش مس باعث افزایش ضخامت باقتات ساقه به استثنای کوتیکول شد.

کلمات کليدي: درصد جوانه‌زی، وند چوي، نهی‌بند.

1- استادیار گروه گياهان دارویی، مرکز آموزش عالي شهید باقری میاندورب، دانشگاه ارومیه، ارومیه، آذربایجان غربی، ایران
2- دانشجو گياهان دارویی، گروه گياهان دارویی، مرکز آموزش عالي شهید باقری میاندورب، دانشگاه ارومیه، ارومیه، آذربایجان غربی، ایران
3- f.nejdhabibvash@urmia.ac.ir
4- توسيع مسئول
5- 1394/10/12
مقدمه
حَد* به عنوان منبع اصلی تغذیه معده‌ای گیاه‌ها توسط آلان‌دهمی پی‌سی‌بی‌ای با غلظت‌ها و ترکیبات مختلف مورد استفاده قرار گرفته است (17). یک دسته از این گیاه‌های فلات از سال‌ها است که از طریقٔ گیاه‌ها برای مصرف در ایران مورد استفاده قرار گرفته‌اند (18). در مقاله‌ای از سال ۱۳۸۵ نیز گزارش شده است که به‌طور بالغی به هم گیاه‌های مختلفی است که این سرده تراش‌های غلظت‌های Nairytae (۱۹) و رطوبت‌هایieder (۲۰) در سئول و کیمیا (۲۱) که به‌طور بالغی به هم گیاه‌های مختلفی است که این سرده تراش‌های غلظت‌های Nairytae (۱۹) و رطوبت‌هایieder (۲۰) در سئول و کیمیا (۲۱) که به‌طور بالغی به هم گیاه‌های مختلفی است که این سرده تراش‌های غلظت‌های Nairytae (۱۹) و رطوبت‌هایieder (۲۰) در سئول و کیمیا (۲۱) که به‌طور بالغی به هم گیاه‌های مختلفی است که این سرده تراش‌های غلظت‌های Nairytae (۱۹) و رطوبت‌هایieder (۲۰) در سئول و کیمیا (۲۱) که به‌طور بالغی به هم گیاه‌های مختلفی است که این سرده تراش‌های غلظت‌های Nairytae (۱۹) و رطوبت‌هایieder (۲۰) در سئول و کیمیا (۲۱) که به‌طور بالغی به هم گیاه‌های مختلفی است که این سرده تراش‌های غلظت‌های Nairytae (۱۹) و رطوبت‌هایieder (۲۰) در سئول و کیمیا (۲۱) که به‌طور بالغی به هم گیاه‌های مختلفی است که این سرده تراش‌های غلظت‌های Nairytae (۱۹) و رطوبت‌هایieder (۲۰) در سئول و کیمیا (۲۱) که به‌طور بالغی به هم گیاه‌های مختلفی است که این سرده تراش‌های غلظت‌های Nairytae (۱۹) و رطوبت‌هایieder (۲۰) در سئول و کیمیا (۲۱) که به‌طور بالغی به هم گیاه‌های مختلفی است که این سرده تراش‌های غلظت‌های Nairytae (۱۹) و رطوبت‌هایieder (۲۰) در سئول و کیمیا (۲۱) که به‌طور بالغی به هم گیاه‌های مختلفی است که این سرده تراش‌های غلظت‌های Nairytae (۱۹) و رطوبت‌هایieder (۲۰) در سئول و کیمیا (۲۱) که به‌طور بالغی به هم گیاه‌های مختلفی است که این سرده تراش‌های غلظت‌های Nairytae (۱۹) و رطوبت‌هایieder (۲۰) در سئول و کیمیا (۲۱) که به‌طور بالغی به هم گیاه‌های مختلفی است که این سرده تراش‌های غلظت‌های Nairytae (۱۹) و رطوبت‌هایieder (۲۰) در سئول و کیمیا (۲۱) که به‌طور بالغی به هم گیاه‌های مختلفی است که این سرده تراش‌های غلظت‌های Nairytae (۱۹) و رطوبت‌هایieder (۲۰) در سئول و کیمیا (۲۱) که به‌طور بالغی به هم گیاه‌های مختلفی است که این سرده تراش‌های غلظت‌های Nairytae (۱۹) و رطوبت‌هایieder (۲۰) در سئول و کیمیا (۲۱) که به‌طور بالغی به هم گیاه‌های مختلفی است که این سرده تراش‌های غلظت‌های Nairytae (۱۹) و رطوبت‌هایieder (۲۰) در سئول و کیمیا (۲۱) که به‌طور بالغی به هم گیاه‌های مختلفی است که این سرده تراش‌های غلظت‌های Nairytae (۱۹) و رطوبت‌هایieder (۲۰) در سئول و کیمیا (۲۱) که به‌طور بالغی به هم گیاه‌های مختلفی است که این سرده تراش‌های غلظت‌های Nairytae (۱۹) و رطوبت‌هایieder (۲۰) در سئول و کیمیا (۲۱) که به‌طور بالغی به هم گیاه‌های مختلفی است که این سرده تراش‌های غلظت‌های Nairytae (۱۹) و رطوبت‌هایieder (۲۰) در سئول و کیمیا (۲۱) که به‌طور بالغی به هم گیاه‌های مختلفی است که این سرده تراش‌های غلظت‌های Nairytae (۱۹) و رطوبت‌هایieder (۲۰) در سئول و کیمیا (۲۱) که به‌طور بالغی به هم گیاه‌های مختلفی است که این سرده تراش‌های غلظت‌های Nairytae (۱۹) و رطوبت‌هایieder (۲۰) در سئول و کیمیا (۲۱) که به‌طور بالغی به هم گیاه‌های مختلفی است که این سرده تراش‌های غلظت‌های Nairytae (۱۹) و رطوبت‌هایieder (۲۰) در سئول و کیمیا (۲۱) که به‌طور بالغی به هم گیاه‌های مختلفی است که این سرده تراش‌های غلظت‌های Nairytae (۱۹) و رطوبت‌هایieder (۲۰) در سئول و کیمیا (۲۱) که به‌طور بالغی به هم گیاه‌های مختلفی است که این سرده تراش‌های غلظت‌های Nairytae (۱۹) و رطوبت‌هایieder (۲۰) در سئول و کیمیا (۲۱) که به‌طور بالغی به هم گیاه–
نریکه علمی پژوهشی مرتع، سال باردهم/ شماره سوم/ پاییز 1396

مقدمه
آزمایش به صورت فاکتوریل در قالب طرح کامل و
تصادفی با سه تکرار در آزمایشات مرتوانی به گروه‌های و
نگرهای آزمایشگاه خاک مرکز آموزشی
زبان شهید بارکر می‌باشد. در سال 1396
بذر اردک که به شکل روبه‌رو با توجه به رنگ،
شاره‌گذاری و توپر بودن از بذر نارس و شیب، جدایی
شدند، با این حال، شناختن 2، 4-دندانه و درون پیت داشته‌ای
استریل برای جوانزی قرار داده شدند (27) و بیماری به
صورت روانه با محلول سولفات مس به ناحیه گرفته.
(۱۹۳۹) این خانه و ۴ و ۷ میلی‌گرم در انتهای انجام گرفت.
شماره جوانزی سپس از ۱۴ روز که این هیچ بذر
جوانزی به دست دادند، در گروه‌ها مختلف تحت تیمار انجام
گرفت.

نام: همگان، جشن که کشت گلدانی، فاکتور مس در ناحیه
سپس (۲۷) (تیمار شاهد)، ۱.۳ و ۶ میلی‌گرم در کیلوگرم.
خاک از منبع سولفات مس (CuSO۴•۷H۲O)
تهیه شد.

مقدار نجات کیلوگرم خاک داخل باکتری‌های پلاستیکی ریخته
شد و مطلق تنش طرح سطح مختلف مس به صورت
محلول از منبع سولفات مس به خاک داخل باک‌ها اضافه
گردید. پس از رسیدن رطوبت خاک به حد طرفیت زراعی،
خاک موجد در هر کیسه به خوبی مخلوط شد تا در تمام
قسمت‌ها یکنواخت گردد. مقدار مس مورد در خاک قبل
از آزمایش به روش اسپزومتو و هدایت (۱۸۷۲) تعیین
شد (۳۱) و مقدار آن در ۱ میلی‌گرم در کیلوگرم بود.
خاک مورد

تاریخچه
در بررسی آزمایش جوانزی، ۱۰ صفحه شامل دصد
دانشگاهی، سرعت جوانزی، متوسط جوانزی روزانه، طول
ساقه‌های و ریشه‌های خاک ترا و خاک ریشه‌های خاک ترا و
خاک ساقه‌های و ریشه‌های ترا، مورد بررسی قرار گرفت. تجهیز
واریانس صفات مورد مطالعه (ANOVA) در جدول ۱ آمده
است نتایج نشان داد که طول ساقه‌های و ریشه‌های خاک ترا و
ساقه‌های و ریشه‌های خاک ترا در
سپس ۵ درصد معنی‌دار بودند (جدول ۱). همان طری به
ملاحظه می‌رود تأثیر سطح مختلف سولفات مس بر
درصد و سرعت جوانزی، متوسط جوانزی روزانه و طول
ساقه‌های معنی‌دار نبود و لی در برف صفات مورد مطالعه
اختلاف معنی‌دار آماری وجود دارد.

Downloaded from rangelandsrm.ir at 1:28 +0330 on Sunday March 8th 2020
جدول 1: تجزیه واریانس سطح مطالعه شیب درک (Mellilotus officinalis L.)

<table>
<thead>
<tr>
<th>جابجایی</th>
<th>تعداد</th>
<th>مجموعه متغیرهای</th>
<th>df</th>
<th>میانگین رسانه</th>
<th>F</th>
<th>معنی‌داری</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد جوانه‌ای</td>
<td>2</td>
<td>بین گروهی</td>
<td>8</td>
<td>0.0498</td>
<td>0.066</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>درون گروهی</td>
<td>16</td>
<td>0.0376</td>
<td>0.046</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>کل</td>
<td>24</td>
<td>0.046</td>
<td>0.057</td>
<td>0.001</td>
</tr>
<tr>
<td>سرعت جوانه‌ای</td>
<td>2</td>
<td>بین گروهی</td>
<td>8</td>
<td>0.0498</td>
<td>0.066</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>درون گروهی</td>
<td>16</td>
<td>0.0376</td>
<td>0.046</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>کل</td>
<td>24</td>
<td>0.046</td>
<td>0.057</td>
<td>0.001</td>
</tr>
<tr>
<td>طول ساقه‌های</td>
<td>4</td>
<td>بین گروهی</td>
<td>2</td>
<td>0.0498</td>
<td>0.066</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>درون گروهی</td>
<td>4</td>
<td>0.0376</td>
<td>0.046</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>کل</td>
<td>6</td>
<td>0.046</td>
<td>0.057</td>
<td>0.001</td>
</tr>
<tr>
<td>وزن شاخه‌های</td>
<td>4</td>
<td>بین گروهی</td>
<td>2</td>
<td>0.0498</td>
<td>0.066</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>درون گروهی</td>
<td>4</td>
<td>0.0376</td>
<td>0.046</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>کل</td>
<td>6</td>
<td>0.046</td>
<td>0.057</td>
<td>0.001</td>
</tr>
<tr>
<td>وزن ریشه‌های</td>
<td>4</td>
<td>بین گروهی</td>
<td>2</td>
<td>0.0498</td>
<td>0.066</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>درون گروهی</td>
<td>4</td>
<td>0.0376</td>
<td>0.046</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>کل</td>
<td>6</td>
<td>0.046</td>
<td>0.057</td>
<td>0.001</td>
</tr>
<tr>
<td>طول ریشه‌های</td>
<td>4</td>
<td>بین گروهی</td>
<td>2</td>
<td>0.0498</td>
<td>0.066</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>درون گروهی</td>
<td>4</td>
<td>0.0376</td>
<td>0.046</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>کل</td>
<td>6</td>
<td>0.046</td>
<td>0.057</td>
<td>0.001</td>
</tr>
<tr>
<td>پنجه بار</td>
<td>4</td>
<td>بین گروهی</td>
<td>2</td>
<td>0.0498</td>
<td>0.066</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>درون گروهی</td>
<td>4</td>
<td>0.0376</td>
<td>0.046</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>کل</td>
<td>6</td>
<td>0.046</td>
<td>0.057</td>
<td>0.001</td>
</tr>
</tbody>
</table>

اثر سطح مختلف سولفات مس بر درصد و سرعت جوانه‌ای

در تحقیق صورت گرفته، مقایسه میانگین داده‌های مورد مطالعه نشان داد که ابتدای غلظت‌های سولفات مس تاثیر زیادی در درصد و سرعت جوانه‌ای نداشت (جدول 1) اما با افزایش غلظت، سولفات مس از جوانه‌های پر راه جلوگیری می‌کند به طوری که بیشترین درصد و سرعت جوانه‌زی مربوط به تیمار 1/610 و 4/888 می‌باشد.

اثر سطح مختلف سولفات مس بر طول ریشه‌های و ساقه‌ها

نتایج بدست آمده در پژوهش حاضر نشان داد که با افزایش غلظت سولفات مس در محیط رشد گیاه، طول ساقه‌ها و ریشه‌های کاهش می‌یابد. به طوری که بیشترین طول ساقه‌ها و ریشه‌های تیمار مربوط به تیمار می‌باشد 7/05 و 1/520 که اختلاف...
نشریه علمی پژوهشی مرتع، سال باند۴/۷/۱۳۹۶

خشک ساقه‌چه و ریشه‌چه کاهش می‌یابد. بهطوری که بیشترین وزن تر و خشک ساقه‌چه و ریشه‌چه به ترتیب متعلق به تیمار شاهد (۶۲/۴۸) و ۷/۱ میلی‌گرم در لیتر سولفات مس بود (۶۲/۴۸ و ۷/۱ میلی‌گرم در لیتر)؛ مقایسه میانگین صفات مختلف موردنظر بستگی نشان داد که طول ریشه‌چه تیمار شاهد و نقطه‌ای (۴/۳ ۷/۱) می‌گرم در لیتر و طول ساقه‌چه در نقطه‌ای (۷/۱ میلی‌گرم در لیتر در سطح احتمال 5 درصد معنی‌دار بود (جدول ۲). اثر سطح مختلف سولفات مس بر وزن تر و خشک ساقه‌چه و ریشه‌چه:

نتایج به‌دست آمده در پژوهش حاضر نشان داد که با افزایش غلظت سولفات مس در محیط رشد گیاه، وزن تر و مس در سطح احتمال 5 درصد معنی‌دار است (جدول ۳).

جدول ۲ مقایسه میانگین اثر سطح مختلف سولفات مس بر صفات مورد بررسی شیدرک با روش دانکن

<table>
<thead>
<tr>
<th>صفت</th>
<th>سطح</th>
<th>میانگین ۵ میلی‌گرم در لیتر</th>
<th>میانگین ۴ میلی‌گرم در لیتر</th>
<th>میانگین ۳ میلی‌گرم در لیتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن تر</td>
<td></td>
<td>۳/۳۵</td>
<td>۳/۳۵</td>
<td>۳/۳۵</td>
</tr>
<tr>
<td>طول ساقه‌چه</td>
<td></td>
<td>۴/۴۸</td>
<td>۴/۴۸</td>
<td>۴/۴۸</td>
</tr>
<tr>
<td>طول ریشه‌چه</td>
<td></td>
<td>۴/۴۸</td>
<td>۴/۴۸</td>
<td>۴/۴۸</td>
</tr>
</tbody>
</table>

و این تأثیر در سطح احتمال 5 درصد معنی‌دار است (جدول ۲). همچنین مقایسه میانگین‌ها با استفاده از آزمون دانکن نشان داد که متوسط سولفات مس ۵ و ۴ میلی‌گرم در لیتر با هم اختلاف معنی‌دار آماری دارد ولی سطح ۳ و ۱ میلی‌گرم در لیتر با هم اختلاف معنی‌دار آماری دارد (جدول ۲). بیشترین میزان نتیجه بذر مربوط به شرایط عدم نش و ۴۸/۵۷/۵۷ و ۴۸/۵۷/۵۷ و کمترین میزان نتیجه بذر متعلق به تیمار ۴ میلی‌گرم در لیتر سولفات مس بود (113/13).

اثر سطح مختلف سولفات مس بر متوسط جوانزی‌رژه:

طبق جدول مقایسه میانگین‌ها با افزایش غلظت سولفات مس از میزان متوسط جوانزی‌رژه بدنر شیدرک کاهش یافته، بهطوری که بیشترین متوسط جوانزی‌رژه در نتیجه بوی (۱/۰) که اختلاف معنی‌داری با هم نداشته و گرم تندر سرعت جوانزی زنی مربوط به تیمار ۳ میلی‌گرم در لیتر (۱/۷۴) و ۲/۷ ۸/۵۸ (۱/۷۴) که اختلاف معنی‌داری بین این دو وجود نداشت (جدول ۲). مقایسه میانگین صفات مختلف موردنظر بستگی نشان داد که متوسط جوانزی‌رژه در تمام سطح غلظت معنی‌دار بود (جدول ۲).

بررسی تشریحی:

نتایج حاصل از بررسی ساختار تشریحی در این پژوهش نشان می‌دهد که سیمت محلول سولفات مس ساختار تشریحی گیاه را تحت تأثیر خود قرار داده است (جدول ۳ و شکل‌های ۱۲-۱۴).
جدول 3: تجزیه واریانس مقدار مطالعه ریشه شیبدرک

<table>
<thead>
<tr>
<th>سازنده</th>
<th>مجموع مراتب</th>
<th>df</th>
<th>میانگین مراتب</th>
<th>F</th>
<th>معنی‌داری</th>
</tr>
</thead>
<tbody>
<tr>
<td>ایندرم</td>
<td>1294/012</td>
<td>3</td>
<td>398/032</td>
<td>1522/020</td>
<td>0/000/00</td>
</tr>
<tr>
<td>دورنگر</td>
<td>1524/208</td>
<td>5</td>
<td>808/428</td>
<td>1534/035</td>
<td>0/000/000</td>
</tr>
<tr>
<td>کل</td>
<td>3547/560</td>
<td>8</td>
<td>808/428</td>
<td>1534/035</td>
<td>0/000/000</td>
</tr>
<tr>
<td>ایندرم</td>
<td>1294/012</td>
<td>3</td>
<td>398/032</td>
<td>1522/020</td>
<td>0/000/00</td>
</tr>
<tr>
<td>دورنگر</td>
<td>1524/208</td>
<td>5</td>
<td>808/428</td>
<td>1534/035</td>
<td>0/000/000</td>
</tr>
<tr>
<td>کل</td>
<td>3547/560</td>
<td>8</td>
<td>808/428</td>
<td>1534/035</td>
<td>0/000/000</td>
</tr>
</tbody>
</table>

میانگین‌ها در هر سری، که در اینجا به‌عنوان یک حرف مشترک می‌باشند، بر اساس آزمون چند همان در سطح احتمال 5 درصد معنی‌دار ندارند.

جدول 4: تأثیر سطوح مختلف سولفات مس بر ساختار تشريحي ریشه شیبدرک

<table>
<thead>
<tr>
<th>سازنده</th>
<th>نانو</th>
<th>میکروکائول (nm)</th>
<th>کوکیول (nm)</th>
<th>فلز (گرم کلی)</th>
<th>معنی‌داری</th>
</tr>
</thead>
<tbody>
<tr>
<td>ایندرم</td>
<td>800/03a</td>
<td>800/03a</td>
<td>800/03a</td>
<td>800/03a</td>
<td>800/03a</td>
</tr>
<tr>
<td>دورنگر</td>
<td>800/03b</td>
<td>800/03b</td>
<td>800/03b</td>
<td>800/03b</td>
<td>800/03b</td>
</tr>
<tr>
<td>کل</td>
<td>800/03c</td>
<td>800/03c</td>
<td>800/03c</td>
<td>800/03c</td>
<td>800/03c</td>
</tr>
<tr>
<td>ایندرم</td>
<td>800/03a</td>
<td>800/03a</td>
<td>800/03a</td>
<td>800/03a</td>
<td>800/03a</td>
</tr>
<tr>
<td>دورنگر</td>
<td>800/03b</td>
<td>800/03b</td>
<td>800/03b</td>
<td>800/03b</td>
<td>800/03b</td>
</tr>
<tr>
<td>کل</td>
<td>800/03c</td>
<td>800/03c</td>
<td>800/03c</td>
<td>800/03c</td>
<td>800/03c</td>
</tr>
</tbody>
</table>

نتایج حاصل از مطالعه بررسی نشان داد که تغییرات در سطح مختلف میکروکائول و نانو باعث افزایش غلظت سولفات مس و افزایش مقاومت رشد، ساختار و امکان ایجاد برهمکنش سولفات مس و برای مدل‌سازی ساختارهای نانو و میکروکائول غلظت سولفات مس و افزایش مقاومت رشد، ساختار و امکان ایجاد برهمکنش سولفات مس و برای مدل‌سازی ساختارهای نانو و میکروکائول غلظت سولفات مس و افزایش مقاومت رشد، ساختار و امکان ایجاد برهمکنش سولفات مس و برای مدل‌سازی ساختارهای نانو و میکروکائول غلظت سولفات مس و افزایش مقاومت رشد، ساختار و امکان ایجاد برهمکنش سولفات مس و برای مدل‌سازی ساختارهای نانو و میکروکائول غلظت سولفات مس و برای مدل‌سازی ساختاررک:
جدول ۵: آنالیز واریانس صفات مورد مطالعه ساقه شبدکر

<table>
<thead>
<tr>
<th>صفت</th>
<th>مجموع مربعات</th>
<th>df</th>
<th>سیگنال مربعات</th>
<th>F</th>
<th>معنی‌داری</th>
</tr>
</thead>
<tbody>
<tr>
<td>کوتیکول</td>
<td>بین گروه‌های</td>
<td>۴</td>
<td>۳۰/۹۸</td>
<td>۶/۴۲</td>
<td>*<0/05</td>
</tr>
<tr>
<td></td>
<td>درون گروه‌ها</td>
<td>۲/۰۲</td>
<td>۰/۰۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>کل</td>
<td>۶/۲۴</td>
<td>۰/۰۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>اپیدرم</td>
<td>بین گروه‌های</td>
<td>۴</td>
<td>۱۸/۵۷</td>
<td>۴/۴۲</td>
<td>*<0/05</td>
</tr>
<tr>
<td></td>
<td>درون گروه‌ها</td>
<td>۱/۰۷</td>
<td>۰/۰۲</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>کل</td>
<td>۱۹/۶۴</td>
<td>۰/۰۷</td>
<td></td>
<td></td>
</tr>
<tr>
<td>پرایشم پوستی</td>
<td>بین گروه‌های</td>
<td>۴</td>
<td>۱۴/۳۲</td>
<td>۳/۷۸</td>
<td>*<0/05</td>
</tr>
<tr>
<td></td>
<td>درون گروه‌ها</td>
<td>۱/۲۸</td>
<td>۰/۰۶</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>کل</td>
<td>۱۵/۶۰</td>
<td>۰/۱۴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>فلام</td>
<td>بین گروه‌های</td>
<td>۴</td>
<td>۹/۸۸</td>
<td>۲/۴۸</td>
<td>*<0/05</td>
</tr>
<tr>
<td></td>
<td>درون گروه‌ها</td>
<td>۰/۰۴</td>
<td>۰/۰۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>کل</td>
<td>۱۰/۹۲</td>
<td>۰/۰۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>گلیم</td>
<td>بین گروه‌های</td>
<td>۴</td>
<td>۲/۰۰</td>
<td>۰/۰۵</td>
<td>*<0/05</td>
</tr>
<tr>
<td></td>
<td>درون گروه‌ها</td>
<td>۰/۰۴</td>
<td>۰/۰۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>کل</td>
<td>۲/۰۴</td>
<td>۰/۰۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>پرینگلیم</td>
<td>بین گروه‌های</td>
<td>۴</td>
<td>۳/۰۰</td>
<td>۰/۰۷</td>
<td>*<0/05</td>
</tr>
<tr>
<td></td>
<td>درون گروه‌ها</td>
<td>۰/۰۴</td>
<td>۰/۰۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>کل</td>
<td>۳/۰۴</td>
<td>۰/۰۷</td>
<td></td>
<td></td>
</tr>
<tr>
<td>متانگلیم</td>
<td>بین گروه‌های</td>
<td>۴</td>
<td>۴/۰۰</td>
<td>۰/۱۰</td>
<td>*<0/05</td>
</tr>
<tr>
<td></td>
<td>درون گروه‌ها</td>
<td>۰/۰۴</td>
<td>۰/۰۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>کل</td>
<td>۴/۰۴</td>
<td>۰/۱۰</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول ۶ - تأثیر سطح مختلف سولفات مس بر آناتومی ساقه شبدکر

<table>
<thead>
<tr>
<th>صفت</th>
<th>مجموع مربعات</th>
<th>df</th>
<th>سیگنال مربعات</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>کوتیکول</td>
<td>بین گروه‌های</td>
<td>۴</td>
<td>۳۰/۱۲</td>
<td>۶/۴۲</td>
<td>*<0/05</td>
</tr>
<tr>
<td></td>
<td>درون گروه‌ها</td>
<td>۲/۰۲</td>
<td>۰/۰۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>کل</td>
<td>۶/۲۴</td>
<td>۰/۰۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>اپیدرم</td>
<td>بین گروه‌های</td>
<td>۴</td>
<td>۱۸/۵۷</td>
<td>۴/۴۲</td>
<td>*<0/05</td>
</tr>
<tr>
<td></td>
<td>درون گروه‌ها</td>
<td>۱/۰۷</td>
<td>۰/۰۲</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>کل</td>
<td>۱۹/۶۴</td>
<td>۰/۰۷</td>
<td></td>
<td></td>
</tr>
<tr>
<td>پرایشم پوستی</td>
<td>بین گروه‌های</td>
<td>۴</td>
<td>۱۴/۳۲</td>
<td>۳/۷۸</td>
<td>*<0/05</td>
</tr>
<tr>
<td></td>
<td>درون گروه‌ها</td>
<td>۱/۲۸</td>
<td>۰/۰۶</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>کل</td>
<td>۱۵/۶۰</td>
<td>۰/۱۴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>فلام</td>
<td>بین گروه‌های</td>
<td>۴</td>
<td>۹/۸۸</td>
<td>۲/۴۸</td>
<td>*<0/05</td>
</tr>
<tr>
<td></td>
<td>درون گروه‌ها</td>
<td>۰/۰۴</td>
<td>۰/۰۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>کل</td>
<td>۱۰/۹۲</td>
<td>۰/۰۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>گلیم</td>
<td>بین گروه‌های</td>
<td>۴</td>
<td>۲/۰۰</td>
<td>۰/۰۵</td>
<td>*<0/05</td>
</tr>
<tr>
<td></td>
<td>درون گروه‌ها</td>
<td>۰/۰۴</td>
<td>۰/۰۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>کل</td>
<td>۲/۰۴</td>
<td>۰/۰۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>پرینگلیم</td>
<td>بین گروه‌های</td>
<td>۴</td>
<td>۳/۰۰</td>
<td>۰/۰۷</td>
<td>*<0/05</td>
</tr>
<tr>
<td></td>
<td>درون گروه‌ها</td>
<td>۰/۰۴</td>
<td>۰/۰۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>کل</td>
<td>۳/۰۴</td>
<td>۰/۰۷</td>
<td></td>
<td></td>
</tr>
<tr>
<td>متانگلیم</td>
<td>بین گروه‌های</td>
<td>۴</td>
<td>۴/۰۰</td>
<td>۰/۱۰</td>
<td>*<0/05</td>
</tr>
<tr>
<td></td>
<td>درون گروه‌ها</td>
<td>۰/۰۴</td>
<td>۰/۰۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>کل</td>
<td>۴/۰۴</td>
<td>۰/۱۰</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

معنی‌داری بودن در سطح احتمال ۵ درصد و غیر معنی‌دار بودن در سطح احتمال ۵ درصد

جدول شماره ۷ - تجزیه واریانس صفات مورد مطالعه برق شبدکر

<table>
<thead>
<tr>
<th>صفت</th>
<th>مجموع مربعات</th>
<th>df</th>
<th>سیگنال مربعات</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>اپیدرم فوقانی</td>
<td>بین گروه‌های</td>
<td>۴</td>
<td>۳۰/۱۲</td>
<td>۶/۴۲</td>
<td>*<0/05</td>
</tr>
<tr>
<td></td>
<td>درون گروه‌ها</td>
<td>۲/۰۲</td>
<td>۰/۰۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>کل</td>
<td>۶/۲۴</td>
<td>۰/۰۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>مورفول</td>
<td>بین گروه‌های</td>
<td>۴</td>
<td>۱۸/۵۷</td>
<td>۴/۴۲</td>
<td>*<0/05</td>
</tr>
<tr>
<td></td>
<td>درون گروه‌ها</td>
<td>۱/۰۷</td>
<td>۰/۰۲</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>کل</td>
<td>۱۹/۶۴</td>
<td>۰/۰۷</td>
<td></td>
<td></td>
</tr>
<tr>
<td>پرهک برگ</td>
<td>بین گروه‌های</td>
<td>۴</td>
<td>۹/۸۸</td>
<td>۲/۴۸</td>
<td>*<0/05</td>
</tr>
<tr>
<td></td>
<td>درون گروه‌ها</td>
<td>۰/۰۴</td>
<td>۰/۰۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>کل</td>
<td>۱۰/۹۲</td>
<td>۰/۰۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>اپیدرم تحتانی</td>
<td>بین گروه‌های</td>
<td>۴</td>
<td>۳۰/۱۲</td>
<td>۶/۴۲</td>
<td>*<0/05</td>
</tr>
<tr>
<td></td>
<td>درون گروه‌ها</td>
<td>۲/۰۲</td>
<td>۰/۰۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>کل</td>
<td>۶/۲۴</td>
<td>۰/۰۵</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

معنی‌داری بودن در سطح احتمال ۵ درصد
جدول شماره ۸- تأثیر سطوح مختلف سولفات مس بر آنتیوژن برگ شبدکر

<table>
<thead>
<tr>
<th>سطح‌‌گذاری</th>
<th>شبدکر</th>
<th>طول‌گذاری</th>
<th>فضای‌گذاری</th>
<th>پیک‌گذاری</th>
<th>نرمال‌گذاری</th>
</tr>
</thead>
<tbody>
<tr>
<td>شبدکر</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>طول‌گذاری</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>فضای‌گذاری</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>پیک‌گذاری</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>نرمال‌گذاری</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

بررسی تأثیر سولفات مس بر صفات جوان‌زینی و ساختار تشريحي اندام‌های روپش‌شبدکر

ساختار آنتیوژنی سولفات شبدکر:

نتیجه‌گیری: آبادمان آنتیوژنی، آبادمان سولفات مس (۸۸ میکروگرم) در زیر میکروسکوپ نوری و با استفاده از برگ نمایی‌های مختلف صورت گرفت. نشان داد که سطوح مختلف سولفات مس تأثیر مشخصی بر ساختار آنتیوژنی داشتند. در بررسی بر روی اپیدرم فوقانی، تحتالی و مزوفیل برگ قابل مشاهده بود. نتایج بررسی شده در تحقیق حاضر نشان داد که سیستم با فاکتور سولفات مس کاهش یافت و همچنین با فرصتی مس، شاخه‌های مزوفیل برگ کاهش یافت. به‌طور کل بر روی برگ شبدکر، سیستم فوقانی می‌تواند و در ثبیت شده در نظر نشان داد که فاکتور سولفات مس در سطح احتمال ۵ درصد معنی دارد بود. بود (جدول ۵) (۷). بعضی از اپیدرمت پارانشپ با اضافه کاهش یافته (جدول ۴)، همچنین مقایسه شاخه‌های میکروسکوپی، مختلف مورد بررسی نشان داد که فاکتور اپیدرم و پارانشپ در شاهد و مزوفیل شاخه‌های سولفات مس ۱ و ۳ میکروگرم در لیتر در سطح احتمال ۵ درصد معنی‌دار بود (جدول ۵) (۶). بعضی از اپیدرم و چربی با فاکتور غلظت سولفات مس کاهش یافته (جدول ۴).

![عکس ۱: آنتیوژنی ریشه سولفات شبدکر (۲۰۰۰)](image1)

![عکس ۲: آنتیوژنی سولفات شبدکر (۱۰۰۰)](image2)
تشکل 18: ساختار نخستین میکروورسیون بر روی ناحیه‌ی عشایری، که در طول میکروورسیون با میکروورسیون سطحی سطحی سطحی سطحی سطحی سطحی

تشکل 19: رضایت نخستین میکروورسیون بر روی ناحیه‌ی عشایری، که در طول میکروورسیون با میکروورسیون سطحی سطحی سطحی سطحی سطحی

تشکل 20: ساختار نخستین میکروورسیون بر روی ناحیه‌ی عشایری، که در طول میکروورسیون با میکروورسیون سطحی سطحی سطحی سطحی سطحی

تشکل 21: برگ شاهد نخستین میکروورسیون بر روی ناحیه‌ی عشایری، که در طول میکروورسیون با میکروورسیون سطحی سطحی سطحی سطحی سطحی

تشکل 22: برگ شاهد نخستین میکروورسیون بر روی ناحیه‌ی عشایری، که در طول میکروورسیون با میکروورسیون سطحی سطحی سطحی سطحی سطحی

تشکل 23: برگ شاهد نخستین میکروورسیون بر روی ناحیه‌ی عشایری، که در طول میکروورسیون با میکروورسیون سطحی سطحی سطحی سطحی سطحی

تشکل 24: برگ شاهد نخستین میکروورسیون بر روی ناحیه‌ی عشایری، که در طول میکروورسیون با میکروورسیون سطحی سطحی سطحی سطحی سطحی
بحث و نتیجه‌گیری

تحمل عناصر سنتی در مرحله جوانه‌زی و رشد گیاه به عنوان یکی از استقارات گیاهان تحت شرایط محدود کننده است. پایه به‌نینش‌های محیطی در گیاهان عالی یک پدیده چپ‌یده و غیرقابل انکار می‌باشد. نتایج کلی بدست آمده از این بررسی نشان می‌دهد که غلظت‌های اعمال شده سولفات‌های مس، بوئیم نیکل نیکلی هر Meilotus officinalis L. می‌شود. جوانه‌زی و رشد و نوسان زمان‌ها مرحله مهمی از زندگی گیاه کامل و همچنین حساس ترین مرحله زندگی گیاه نسبت به تغییرات محیطی پرمیتست. بنابراین مطالعه می‌تواند این مرحله در گیاهانی که در معرض آلودگی قرار گرفته‌اند راه مناسبی برای درک اثرات سمی آنها بر گیاهان محروم می‌شود. طبق بررسی سطوح مختلف سولفات‌های مس بر درصد و سرعت جوانه‌زی افرازیاب سطوح آزماشی روی بذر کلیت مناسب‌شده شده گل‌نگاه‌های پایین سرب جوانه‌زی کلیت چنی را افرازیاب داد. در حالی که غلظت‌های بالا یا میدان‌های مسی جوانه‌زی را باعث کاهش فعالیت گیاهی گزارش شده است (۳۲) که با تأخیر این پژوهش مطالعات دارد.

روند تغییرات انر شیمی‌فیزی سنتی در سلول‌های مس بر بینه بذر نشان داد که افرازیاب در طول نش انی صف به طور معنی‌داری کاهش یافته که نتیجه این مطالعه با نتایج محققین دیگر مطالعات دارد (۲۷، ۲۳ و ۴۲). در گیاه بذرک افرازیابی غلظت سولفات مس و برای مقابله با نش انی ضخامت بیشتر خود را افرازیاب داد (جدول ۳). افرازیاب غلظت سولفات مس پارامیتری کی نخ و آبیک، آبود چهر، متاکریل و پروپیل‌برد ریشه کاهش یافته در شرایط نیکل در اول تأثیر مس و گیاه بروی نماینده پژوهش سلول ریشه است و کاوش در عرض پارامتری ریشه
مس مواد در ریشه‌ها یا کورنیس‌های بیشتر به صورت منطقل به دیواره سولیول است (8). تصور می‌شود که اتصال Cu به صورت مستقیم یا با جایگزینی قسمتی از Ca به دیواره سولیول آتشفشانی آن را کاهش داده، در نتیجه موجب کاهش رشد برگ و در نتیجه کاهش ضخامت مویی و کل برگ در حضور اضافی می‌شود (35) که با نتیجه این پژوهش مطابقت دارد.

بنابراین، نتایج آزمون جواندزی گیاه شیبدک در گروه‌های تیماری مختلف با سولفات سد نشان داد که افزایش غلظت مس از جواندزی جلوگیری می‌کند که این امر نشان دهنده ایجاد محلول‌های است که غلظت‌های بالاتر از 3 میلی‌گرم در لیتر دارند، تیمارها با غلظت‌های بالای این سطح باعث کاهش تعداد نئوناتی شده و تعداد ایندکس‌ها در جواندزی و رشد آبی‌دیسبیس گارش شد که رشد گیاههای نسبت به جواندزی حساس‌بود. نتایج نشان داد که 3 میلی‌گرم در لیتر، به عنوان سطح رسیده و در سطح 5 میلی‌گرم، درصد اختلاف معنی‌دار داشتند. مس می‌تواند از طریق اعمال تأثیرات زیان بر فرآیندهای فیتوژانکی مهم موجب ناهنجاری‌هایی می‌شود که در نتیجه تاخیر در این پژوهش نشان می‌دهد که سیمی محلول سولفات سد ساکت‌تر نسخه کاهشی گیاه را تحت تأثیر خود قرار داده است.

عمداً نتیجه کاشش در اندامز متواضع سولیول‌ها بود (33). کاشش ناشی از تاثیر مس در اندامز سولیول شامل تمام سولیول‌های ریشه، قطر آن‌های چوبی و آبکش و کاهش ضخامت استوانه مرکزی و در نتیجه کاهش قطر رشته می‌شود (16). کاشش در قطر متوسطی به عنوان یکی از عوامل مورب شرایط زیست گیاهان به سه گروه می‌شود (36) که مشاهده شد که مس باعث کاهش عدیلی از رشد ریشه گیاه و عوامل مهمی در حفظ سلیژی اثر مثبت کاشش می‌گردد. با این حال از افزایش غلظت سولفات سد که موجب کاهش رشد جواندزی و رشد آبی‌دیسبس گارش شد که رشد گیاههای نسبت به جواندزی حساس‌بود، نتایج نشان داد که 3 میلی‌گرم در لیتر به عنوان سطح رسیده و در سطح 5 میلی‌گرم درصد اختلاف معن‌دار داشتند. مس می‌تواند از طریق اعمال تأثیرات زیان بر فرآیندهای فیتوژانکی مهم موجب ناهنجاری‌هایی در رشد نرم گیاه شود (30). نتایج اصلی از ساختر شریفی در این پژوهش نشان می‌دهد که سیمی محلول سولفات سد ساکت‌تر نسخه کاهشی گیاه را تحت تأثیر خود قرار داده است.

سطوح مختلف مس که تأثیر مشخصی بر ساختار برگ شیبدک داشتند، در برخی عرضی برگ، این تأثیر بر روی ایپیدرم واقعی، تحقیق و مویی ورید قابل مشاهده است. طبق بررسی پژوهشگر دبیر (15) با افزایش غلظت مس ضخامت ایپیدرم واقعی و تحقیق برگ افزایش یافته که با نتایج بررسی هم‌اکنون مطابقت دارد. افزایش ایپیدرم یک استراتژی برای به حداقل رساندن از دست دادن آب در اثر تعرق است (37).

نتایج بررسی شده در مطالعه حاضر، نشان داد که ضخامت کل برگ و مویی برگ در شیبدک با افزایش غلظت مس کاهش یافته که با نتایج دیگر پژوهشگران (9) مطابقت دارد.
References

