چکیده

به منظور بررسی اثر گرداگردانی در مردان تأثیرات تغییرات در ارتفاع، در این پژوهش، دهانه مشاهده و گزارش‌های خاک در مراحل تغییرات روسن (مطالعه)

موردی: مراحل تغییرات روسن (تولکلو مغان)

سفر غفاری، اردوان قربانی، کلام الله ارگمن، علی نیموراش، کاظم هاشمی مجد و سیما جعفری

تاریخ دریافت: 1394/12/14 - تاریخ تصویب: 1395/11/20

چهره

اندازه‌گیری و گزارش‌های خاک شما اسپرتین، هلیاک، الکترینکی، سدیم، منزیم، کلسیم، پتاسیم، ازک، فسفر، کربن آماده و درصد ذرات شن، سیلت و رس انجم شد. برای بررسی اثر شدت پتو از (چرا) پوست و گزارش‌های اندازه‌گیری شده از آزمون تجزیه واریانس و آزمون مانگان‌ها و گیاه‌شناسی آنها استفاده شد. نتایج نشان داد با افزایش درصد چرا در مراحل تغییرات به‌طور معمول دردی‌هایی و میزان خاک تحت (30%) و سر و سنگریزه (50%) افزایش یافته است. گونه‌های خوش‌خوارک Astragalus rostratus C.A. Mey. و Trigonella monspeliaca ل. درصد پوست (به ترتیب 94٪ و 104٪)، تراکم (به ترتیب 14٪ و 10٪) در چرا سبک بودن و به‌دنبال با افزایش شدت چرا از درصد گونه‌ای خوش‌خوارک کاسته (100%≤p) و به درصد گونه‌ای کلاس II افزوده شد. نتایج نشان داد که با افزایش شدت چرا از مقدار کمی آدنال آدمی، راس (پاتنم، منزیم، سبکی کاسته شده است (201%). ولی بر مقدار هدایت الکترینکی، کلسیم، اکسید و سنگ افزوده شده است (100%≥p). در مجموع چراً برای کاهش دانه‌های تغییرات، روسن در کلاس II نیم‌چه (فیبی) خاک چهارچوبی شامل از روستا برای ارزیابی مراحل تغییرات منطقه‌ای می‌باشد. ولی برای نتایج گزارشی نیاز به پژوهش بیشتر در منطقه می‌باشد. با توجه به نتایج، مراحل روسن (تولکلو بیشتر) تغییرات بسیار است.

واژه‌های کلیدی: شدت چرا، کانون پرین، تراکم، تغییرات، گزارش‌های خاک، استان اردبیل.
I
مواد و روش‌ها
موقوفه منطقه مورد مطالعه
مراجع از نظر تولکلگو از جمله مراجع مشابه شریستان پارس-آباد در منطقه مزار قرار گرفته دارد. (موقوفه جغرافیایی خط نمونه‌برداری در جدول 1 ارائه شده است.) حداکثر ارتفاع در سامان روش‌بندی انتخاب شده 346 متر و حداکثر آن 530 متر بوده که اختلاف ارتفاع می‌باشد. شیب محورهای انتخاب شده کمتر از 1 درصد و به‌صورت استراحتی با 25 متر به مقدار موانع سالانه براساس میانگین 427 میلی‌متر، متوسط مداها و حداکثر منطقه 12/2 و 15/9 درجه سانتی‌گراد اقلیم محدوده انتخاب شده به روش کوبن، نیمه‌خشک است. (27) خاک منطقه عمدی، با پات لومی، رسی و حاجاتجی می‌باشد. نیمی گیاهی سامان روش‌بندی است. Trigonella monspeliaca-Artemisia fragrans
دام به‌پرداری نیز معادن گوسفنده نزاد مغان و به تعداد محدود بین ۵-۷ می‌باشد.

با توجه به اهمیت مراحل معان که بکی از مهم‌ترین مراحل نقش‌آفرین در بودهو و عشایر شهرستان‌ها به‌طور گسترده‌ای انجام می‌پذیرد، موضوع‌های این تحقیق قابل توجهی در ارتباط با ارزیابی وضعیت و تخلیه مراحل این منطقه انجام شدند. همچنین، چهار‌چوب مشخص هم در مراحل، ارزیابی تخلیه مراحل این منطقه. بنابراین، این تحقیق به‌عنوان اولیه ارزیابی چهارچوب گردایان اصلی منطقه از کانون بحرا و قابلیت استفاده از آن برای ارزیابی وضعیت و تخلیه مراحل معان انجام گرفت. خلوتی در صورت انجام کارایی
مراجع از نظر تولکلگو از جغرافیایی بیشتر گیاه و خاک و همچنین در ارزیابی تخلیه مداهم معان استفاده قرار گرفت. در این راستا روش‌بندی‌های تولکلگو در سطح شریستان
پارس‌آباد که نمودار بازار از شرایط اکولوژیکی مراجع نقش‌آفرین منطقه مغان می‌باشد انتخاب و اهداف انتخاب شده مورد ارزیابی مقرر گردید.

جدول 1- موقوفه جغرافیایی خط نمونه‌برداری در مراحل حریم روش‌بندی تولکلگو

<table>
<thead>
<tr>
<th>شدت جدا</th>
<th>ارتفاع</th>
<th>عرض جغرافیایی</th>
<th>قافلیه از روش‌بندی</th>
<th>خط نمونه‌برداری</th>
</tr>
</thead>
<tbody>
<tr>
<td>سنگین</td>
<td>434</td>
<td>24 22 25</td>
<td>50 30 10 5</td>
<td>1</td>
</tr>
<tr>
<td>سنگین</td>
<td>434</td>
<td>24 22 25</td>
<td>50 30 10 5</td>
<td>2</td>
</tr>
<tr>
<td>سنگین</td>
<td>434</td>
<td>24 22 25</td>
<td>50 30 10 5</td>
<td>3</td>
</tr>
<tr>
<td>سنگین</td>
<td>434</td>
<td>24 22 25</td>
<td>50 30 10 5</td>
<td>4</td>
</tr>
<tr>
<td>سنگین</td>
<td>434</td>
<td>24 22 25</td>
<td>50 30 10 5</td>
<td>5</td>
</tr>
<tr>
<td>سنگین</td>
<td>434</td>
<td>24 22 25</td>
<td>50 30 10 5</td>
<td>6</td>
</tr>
<tr>
<td>سنگین</td>
<td>434</td>
<td>24 22 25</td>
<td>50 30 10 5</td>
<td>7</td>
</tr>
<tr>
<td>سنگین</td>
<td>434</td>
<td>24 22 25</td>
<td>50 30 10 5</td>
<td>8</td>
</tr>
<tr>
<td>سنگین</td>
<td>434</td>
<td>24 22 25</td>
<td>50 30 10 5</td>
<td>9</td>
</tr>
</tbody>
</table>

نمونه‌برداری و انتزاع گیاه و گزه‌های خاک
نمونه‌برداری در شدت‌های مختلف چرای سنگین، متوسط و سبک بر اساس اصول چهارچوب گردایان (۵) (۲۵\(\times\)۲۵، ۲۵\(\times\)۱۵، ۱۵\(\times\)۱۵، ۱۵\(\times\)۱۰ و ۱۰\(\times\)۱۰) که با افزایش قابلیت از کانون
بجای از شدت چرای کامله می‌شود، انتخاب شده (جدول 1). روستای تولکلگو نیز تغییرات ارتفاعی، شبیه و جهت کم،
وچار افزایش قابلیت از روش‌بندی تولکلگو و چرای دام
متفاوت می‌باشد. تا بتوان به‌طور قابل‌توجه کانون به بخشهایی با بازار و سبک بازار از شرایط اکولوژیکی مراجع نقش‌آفرین منطقه مغان می‌باشد انتخاب و اهداف انتخاب شده مورد ارزیابی مقرر گردید.

کرده است، لذا حداکثر قابلیت ممکن در این سامان که حدود
۱۲۰۰ متر بوده انتخاب شده. در طول خط نمونه‌برداری اصلی
در قافلیه ۵۰۰ روزه (چرای سنگین، سه خط نمونه‌برداری به خط نمونه‌برداری اصلی (چرای سنگین) به خود ۵۰ متر) از ۲۵۰ تا ۲۵۰ متر (چرای سنگین، سه خط نمونه‌بردا
این روش چارا بر ترکیب، تراکم و درصد ناچیز گیاهی و ویژگی‌های خاک در مراتع حیرت روساتا...
لیامتامپلاکا
آریدوم دسیرت

شادت چنار سنگین و متوسط با ام خاک‌سازی
الیسم دسیرتوام
هیرینیا هیوستا
ترینیگلا مونسینیپلایا
فیلام پانی/
کولینیا لایناریه
کالیوم نیکوپرامتوم

پورپوراپرمیا کانیو
 آریدوم دسیرتوام
الیسم هیوستروکم

در دو شدت چرای
سپرگولا دراکتورا
الیسم هیوستروکم
گارهدروم بانگولوس
میتالوم پنیاپلماتوم

سپرگولا ماترنا
الیسم هیوستروکم
خودولوم انس دراکتوم
کارولاکس کاپوریا
پانسیا کاربیفیلیا

خودولوم انس دراکتوم
پیامی پورپوراپرمیا
الیسم هیوستروکم
گارهدروم بانگولوس
میتالوم پنیاپلماتوم

سپرگولا ماترنا
الیسم هیوستروکم
خودولوم انس دراکتوم
کارولاکس کاپوریا
پانسیا کاربیفیلیا

سپرگولا ماترنا
الیسم هیوستروکم
خودولوم انس دراکتوم
کارولاکس کاپوریا
پانسیا کاربیفیلیا

جدول 2: فهرست گونه‌ها، خاک‌های، فرم زیستی و درصد پوشش و تراکم گونه در سه شدت چرای سبک، متوسط و سنگین در مراتع رستقایک تولکو

<table>
<thead>
<tr>
<th>گونه</th>
<th>خاک‌های</th>
<th>فرم زیستی</th>
<th>درصد پوشش</th>
<th>درصد تراکم</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcea rosea Jacq</td>
<td>Ranunculaceae</td>
<td>Th III</td>
<td>0.37</td>
<td>0.97</td>
</tr>
<tr>
<td>Allium fistulosum Boiss.</td>
<td>Liliaceae</td>
<td>Cr II</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Alyssum desertorum Stapf</td>
<td>Brassicaceae</td>
<td>Th III</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Alyssum heterotrichum Bois</td>
<td>Brassicaceae</td>
<td>Th III</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Androsace villosa L.</td>
<td>Primulaceae</td>
<td>Th III</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Artemisia frigida Willd.</td>
<td>Asteraceae</td>
<td>Ch II</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Artemisia sp</td>
<td>Asteraceae</td>
<td>Ch II</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Artemisia splendens Willd</td>
<td>Asteraceae</td>
<td>Ch II</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Asperula arvensis L.</td>
<td>Rubiaceae</td>
<td>Th III</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Astragalus rostratus C A Mey.</td>
<td>Fabaceae</td>
<td>Th I</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Astragalus savannianus podl</td>
<td>Fabaceae</td>
<td>Th I</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Avena sativa L.</td>
<td>Poaceae</td>
<td>Th II</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Bromus graminis Bunge</td>
<td>Poaceae</td>
<td>Th II</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Bromus tectorum L.</td>
<td>Poaceae</td>
<td>Th II</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Calendula peruviana C A Mey.</td>
<td>Asteraceae</td>
<td>Th III</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Capsella bursa-pastoris (L.) Medik.</td>
<td>Brassicaceae</td>
<td>Th III</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Caesalpinia pulcherrima C.</td>
<td>Leguminosae</td>
<td>Th III</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Cerastium arvense (L.) Scop.</td>
<td>Asteraceae</td>
<td>Th III</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Crepis rossii (Guillet) N.</td>
<td>Poaceae</td>
<td>Th III</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Erodium desert (Ergil) Ergil</td>
<td>Geraniaceae</td>
<td>Th III</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Euphorbia helioscopia L.</td>
<td>Euphorbiaceae</td>
<td>Th III</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Gomphocarpus indicus L.</td>
<td>Fabaceae</td>
<td>Th III</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Gomphocarpus indicus L.</td>
<td>Fabaceae</td>
<td>Th III</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Gomphocarpus indicus L.</td>
<td>Fabaceae</td>
<td>Th III</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Gladiolus grandiflorum Bois. & A.Haut</td>
<td>Papaveraceae</td>
<td>Th III</td>
<td>0.04</td>
<td>0.04</td>
</tr>
</tbody>
</table>

نتیجه علمی بروز، سال باید، شماره جهاد/یزد 1396

(جدول 2)
درصد) در جرای سبک بیشتر از جرای متوسط و سنگین بود. اما اختلاف معنی دار نبود (جدول 3).

مقایسه تراکم دوجان نشان داد که تراکم گونه های روستی نشان داد که تراکم گونه های گاز دچار سنگین (81٪) بیش از دیگر جرای متوسط (74٪) و سنگین (24٪) بود. اما اختلاف معنی دار نبود. تراکم گونه های روستی نشان داد سهم گونه های علفی در جرای سنگین (1/31) درصد) بطور معنی داری بیش از جرای متوسط (8/70)، درصد دسرک گونه های روستی نشان داد سهم گونه های علفی در جرای سنگین (4/31) درصد) بطور معنی داری بیش از جرای متوسط (8/70)، درصد دسرک گونه های روستی نشان داد سهم گونه های علفی در جرای سنگین (4/31) درصد) بطور معنی داری بیش از جرای متوسط (8/70)، درصد دسرک گونه های روستی نشان داد سهم گونه های علفی در جرای سنگین (4/31) درصد) بطور معنی داری بیش از جرای متوسط (8/70)، درصد دسرک گونه های روستی نشان داد سهم گونه های علفی در جرای سنگین (4/31) درصد) بطور معنی داری بیش از جرای متوسط (8/70)، درصد دسرک گونه های روستی نشان داد سهم گونه های علفی در جرای سنگین (4/31) درصد) بطور معنی داری بیش از جرای متوسط (8/70).
اختلاف معنی‌داری بین شدت‌های مختلف جرایی نداشت (جدول 3).

مقایسه ویژگی‌های پوشش سطحی خاک در شدت‌های مختلف جرایی

بیشترین درصد سنگ و سنگرزی در جرای سهگین (37/2 درصد) که بین میانگین درصد سنگرزی در جرای سنگین با جرای سبک تفاوت معنی‌داری نداشت، ولی جرای متوسط درصد خاک لحاظ سطح معنی‌داری بین جرای سبک (17/5 درصد) و سنگین (17/4 درصد) نداشت (جدول 3).

درصد نشان داد (P<0/01) (جدول 3) که بیشترین پراکنش بیانگاه‌های با جرای متوسط 32/6 درصد و کمترین در جرای سنگین 2/7 درصد، که بین میانگین درصد لاف‌تگ در جرای متوسط با جرای سبک تفاوت معنی‌داری بود (P<0/01)، ولی جرای متوسط با سنگین (0/3 درصد) تفاوت معنی‌داری نداشت (جدول 3).

جدول 3: مقایسه میانگین‌های اختلاف معنی‌داری پارامترهای پوشش سطحی خاک در فواصل مختلف از کانون بحران

<table>
<thead>
<tr>
<th>پارامترهای سطحی خاک</th>
<th>چرای سنگین</th>
<th>چرای متوسط</th>
<th>چرای سبک</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد نشان می‌دهد (P<0/01)</td>
<td>35/2/1/94</td>
<td>35/2/1/94</td>
<td>35/2/1/94</td>
</tr>
<tr>
<td>درصد نشان می‌دهد (P<0/01)</td>
<td>28/6/1/18</td>
<td>28/6/1/18</td>
<td>28/6/1/18</td>
</tr>
<tr>
<td>درصد نشان می‌دهد (P<0/01)</td>
<td>21/2/1/34</td>
<td>21/2/1/34</td>
<td>21/2/1/34</td>
</tr>
<tr>
<td>درصد نشان می‌دهد (P<0/01)</td>
<td>15/4/1/94</td>
<td>15/4/1/94</td>
<td>15/4/1/94</td>
</tr>
<tr>
<td>درصد نشان می‌دهد (P<0/01)</td>
<td>9/3/1/34</td>
<td>9/3/1/34</td>
<td>9/3/1/34</td>
</tr>
<tr>
<td>درصد نشان می‌دهد (P<0/01)</td>
<td>3/1/1/34</td>
<td>3/1/1/34</td>
<td>3/1/1/34</td>
</tr>
<tr>
<td>درصد نشان می‌دهد (P<0/01)</td>
<td>1/1/1/34</td>
<td>1/1/1/34</td>
<td>1/1/1/34</td>
</tr>
<tr>
<td>درصد نشان می‌دهد (P<0/01)</td>
<td>0/1/1/34</td>
<td>0/1/1/34</td>
<td>0/1/1/34</td>
</tr>
<tr>
<td>درصد نشان می‌دهد (P<0/01)</td>
<td>3/1/1/34</td>
<td>3/1/1/34</td>
<td>3/1/1/34</td>
</tr>
<tr>
<td>درصد نشان می‌دهد (P<0/01)</td>
<td>2/1/1/34</td>
<td>2/1/1/34</td>
<td>2/1/1/34</td>
</tr>
<tr>
<td>درصد نشان می‌دهد (P<0/01)</td>
<td>1/1/1/34</td>
<td>1/1/1/34</td>
<td>1/1/1/34</td>
</tr>
<tr>
<td>درصد نشان می‌دهد (P<0/01)</td>
<td>0/1/1/34</td>
<td>0/1/1/34</td>
<td>0/1/1/34</td>
</tr>
</tbody>
</table>

برای ترتیب پاندازه‌های مستقیم در سطح 1 و 5 درصد و عدم معنی‌داری انتها، حروف غیرمشترک نشان‌دهنده اختلاف آماری می‌باشد.
مقياس ویژگی‌های فیزیک‌شیمی‌ای خاک در سه شرایب سبک، متوسط و سنگین در مناطق حرش روستا

جدول ۲- مقایسه سه‌گانه ویژگی‌های فیزیک‌شیمی‌ای خاک در سه شرایب سبک، متوسط و سنگین در مناطق سامان تولکو

<table>
<thead>
<tr>
<th>شرایب</th>
<th>جرای سبک</th>
<th>جرای متوسط</th>
<th>جرای سنگین</th>
<th>معنی‌های خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pH)</td>
<td>۸/۴۷۰</td>
<td>۸/۴۷۰</td>
<td>۷/۶۶۶</td>
<td>آسیبده (کال اینش)</td>
</tr>
<tr>
<td>(µs/cm)</td>
<td>(EC)</td>
<td>(µs/cm)</td>
<td>(µs/cm)</td>
<td>بانه‌های کلاریکی</td>
</tr>
<tr>
<td>(meq/l)</td>
<td>(Na)</td>
<td>(meq/l)</td>
<td>(meq/l)</td>
<td>سدیم</td>
</tr>
<tr>
<td>(µs/cm)</td>
<td>(Ca)</td>
<td>(µs/cm)</td>
<td>(µs/cm)</td>
<td>منیون</td>
</tr>
<tr>
<td>(µs/cm)</td>
<td>(Mg)</td>
<td>(µs/cm)</td>
<td>(µs/cm)</td>
<td>خورشید</td>
</tr>
<tr>
<td>(%)</td>
<td>(OC)</td>
<td>(%)</td>
<td>(%)</td>
<td>درصد کربن آلی</td>
</tr>
<tr>
<td>(%)</td>
<td>(OM)</td>
<td>(%)</td>
<td>(%)</td>
<td>درصد ترکیبات عضوی</td>
</tr>
</tbody>
</table>
بحث و نتایج

نتایج نشان داده که آفاویش شدت چرا در داده تاج پوشش
کل کاشت یافته، در میانگین با کاشت شدت چرا تاج پوشش
گونه‌های خوش‌بوک آفرازی و آفرازیک کاشت
یافت. هر چند که برخی از انواع از ۶۵ گونه در شده در
شکل چرا ۲۱ گونه خوش‌بوک آفرازیک روند نیفرت.
قابل قبول از لحاظ چهارپایگو گرداگردان چرا برخورد
نیوده است. که احتمالاً عوامل دیگر مانند ویژگی‌های
خاک انتشار این گونه را تغییر می‌کند و یا احیاً (تویز
آنها تصاریف است (۱۵) و یکی بررسی پیشرفت این
اراتر دارد. در چرا در چرا تاج پوشش گونه‌های
خوش‌بوک گرا کلی انتخاب داشته است. نمونه
گونه‌های خوش‌بوک آفرازیک نیز در برابر چرا چرا یا بعضاً
شادیک داشته است. شهراهای و همکاران (۲۰۱۴) و
قردان چرا در گونه خوش‌بوک آفرازیک تأثیرگذار است
که نتایج تحقیق ما را تأیید می‌کند.

شکسته مختلط‌ترین در معنی داری بر تراکم کل
و تراکم فرم‌های روش‌نداده و تغیرات تراکم گونه‌ها در
مقاومتی با تغییرات تاج پوشش کمتر بوده است. دلیل آن به
شکست تغییر (تغییر از حد استانه فراتنری است) (۱۵)
در سطح این مرداد پستیکی دارد. بی‌گونه‌ای که یک توجه به
شکست چرا از تراکم گونه‌های خوش‌بوک کاملاً شده است.
می‌توان به نتایج تغییرات تغییرات در حکایت نماید و
اما با توجه به سیاست‌های داخلی خاک و صاحب‌نظر بردن
آن تراکم گونه‌های خوش‌بوک حذف نشده و تراکم
آنها به‌طور عمده چرا چرا بوده است (۱۹۹۲) و

۱۹۹۲) و نیز در مطالعه گونه‌های افرازیک گونه‌های
که آفرازیک نشان‌دهنده کاهش یافته است. دیگر
ترفند آن این است که می‌تواند در اثر تغییرات
نوشی بوده است. یکی از دلایل کاهش گونه‌ها در
میانگین با کاشت شدت چرا تاج پوشش
۲۱ گونه خوش‌بوک آفرازیک روند مغز
قابل قبول از لحاظ چهارپایگو گرداگردان چرا برخورد
نیوده است. که احتمالاً عوامل دیگر مانند ویژگی‌های
خاک انتشار این گونه را تغییر می‌کند و یا احیاً (تویز
آنها تصاریف است (۱۵) و یکی بررسی پیشرفت این
اراتر دارد. در چرا در چرا تاج پوشش گونه‌های
خوش‌بوک گرا کلی انتخاب داشته است. نمونه
گونه‌های خوش‌بوک آفرازیک نیز در برابر چرا چرا یا بعضاً
شادیک داشته است. شهراهای و همکاران (۲۰۱۴) و
قردان چرا در گونه خوش‌بوک آفرازیک تأثیرگذار است
که نتایج تحقیق ما را تأیید می‌کند.

شکسته مختلط‌ترین در معنی داری بر تراکم کل
و تراکم فرم‌های روش‌نداده و تغیرات تراکم گونه‌ها در
مقاومتی با تغییرات تاج پوشش کمتر بوده است. دلیل آن به
شکست تغییر (تغییر از حد استانه فراتنری است) (۱۵)
در سطح این مرداد پستیکی دارد. بی‌گونه‌ای که یک توجه به
شکست چرا از تراکم گونه‌های خوش‌بوک کاملاً شده است.
می‌توان به نتایج تغییرات تغییرات در حکایت نماید و
اما با توجه به سیاست‌های داخلی خاک و صاحب‌نظر بردن
آن تراکم گونه‌های خوش‌بوک حذف نشده و تراکم
آنها به‌طور عمده چرا چرا بوده است (۱۹۹۲) و

۱۹۹۲) و نیز در مطالعه گونه‌های افرازیک گونه‌های
که آفرازیک نشان‌دهنده کاهش یافته است. دیگر
ترفند آن این است که می‌تواند در اثر تغییرات
نوشی بوده است. یکی از دلایل کاهش گونه‌ها در
میانگین با کاشت شدت چرا تاج پوشش
۲۱ گونه خوش‌بوک آفرازیک روند مغز
قابل قبول از لحاظ چهارپایگو گرداگردان چرا برخورد
نیوده است. که احتمالاً عوامل دیگر مانند ویژگی‌های
خاک انتشار این گونه را تغییر می‌کند و یا احیاً (تویز
آنها تصاریف است (۱۵) و یکی بررسی پیشرفت این
اراتر دارد. در چرا در چرا تاج پوشش گونه‌های
خوش‌بوک گرا کلی انتخاب داشته است. نمونه
گونه‌های خوش‌بوک آفرازیک نیز در برابر چرا چرا یا بعضاً
شادیک داشته است. شهراهای و همکاران (۲۰۱۴) و
قردان چرا در گونه خوش‌بوک آفرازیک تأثیرگذار است
که نتایج تحقیق ما را تأیید می‌کند.

شکسته مختلط‌ترین در معنی داری بر تراکم کل
و تراکم فرم‌های روش‌نداده و تغیرات تراکم گونه‌ها در
مقاومتی با تغییرات تاج پوشش کمتر بوده است. دلیل آن به
شکست تغییر (تغییر از حد استانه فراتنری است) (۱۵)
در سطح این مرداد پستیکی دارد. بی‌گونه‌ای که یک توجه به
شکست چرا از تراکم گونه‌های خوش‌بوک کاملاً شده است.
می‌توان به نتایج تغییرات تغییرات در حکایت نماید و
اما با توجه به سیاست‌های داخلی خاک و صاحب‌نظر بردن
آن تراکم گونه‌های خوش‌بوک حذف نشده و تراکم
آنها به‌طور عمده چرا چرا بوده است (۱۹۹۲) و
1. Teaguea

2. Kumbasli
References

29. Sanaei, A., M. Zare Chahouki., E. Alizadeh & O. Asadi Nalivan, 2016. The effects of grazing intensity on
vegetation properties around the water resources, case study: Piranshahr summer rangelands. Watershed
Engineering and Management, 7(4): 488-499. (In Persian)
Oomen, C.C. du Preez & W. Amelung, 2015. Rangeland management effects on soil properties in the savanna
biome, South Africa: A case study along grazing gradients in communal and commercial farms. Journal of
Arid Environments, 120:14-25.
harmala</i> and <i>Artemisia sieberi</i> around watering point in winter rangelands of Chahe-Nou, Damghan. Journal of
Agricultural Sciences and Natural Resources, 16(1): 1-10. (In Persian)
species composition and soil characteristics around Iranian piospheres. Journal of Arid Environments, 82: 106-
114.
organic matter and nutrient elements under various grazing intensities (Case study: Chaharbagh mountain
form and chorology of Helen protected area in Chaharmahal and Bakhtiari province. Journal of Plant Biology,
6 (20): 75-96.
Alborz mountains rangelands. Rangeland, 1 (3): 269-278. (In Persian)
properties in a semiarid steppe of Inner Mongolia (P.R. China). Geoderma, 143: 63–72.
management impacts on vegetation, soil biota and soil chemical, physical and hydrological properties in tall
geographical distribution of Meimand region in Shahrbabak (Kerman). Pajouhesh & Sazandegi, 52: 75- 81. (In
Persian)
differing grazing rates on canopy structure and species composition in Hulunber Meadow Steppe. Rangeland
Ecology & Management, 68:54-64.