ارزیابی و مقایسه کیفیت علوفه سه گونه از گندمیان در مراکز مختلف فنولوزی در مراتع پیش‌آلاینده آسیله کلاته

چنار، شهرستان درگز

زهرا خراسانی نژاد، مجید آجورلو، احمد پهلوان‌رود و مصطفی یوسف الهی

نتایج دریافت: ۱۳۹۵/۰۵/۱۴ - تاریخ تحویل: ۱۳۹۵/۰۵/۲۰

چکیده

گونه‌های گیاهی مراجع در مکان‌ها و زمان‌های مختلف، ارزش غذایی منافوتنی دارند. دانشگاه چنگونی تغییرات ارزش غذایی

گیاهان مرتعی با مرحله فنولوزیکی در هر منطقه مشخص، می‌توانند مرطع‌داران را در انتخاب زمان مناسب برای طلا و تنظیم تعداد

دام در مرتع کمک نماید. هدف این مطالعه بررسی کیفیت علوفه سه گونه از گندمیان به‌شماره Avena fatica, Hordeum glaucum و Agropyron elongatum است.

استان خراسان رضوی بود. نمونه‌برداری برای هر گونه در هر مرحله فنولوزیکی به تعداد ۳۰ عدد انجام شد که هر نمونه متشکل

از ۵ پایه گیاهی بود. نمونه‌ها به طور مشترک از ماده خشک، ماده آبی، بروت‌نی‌های خام، خاکستری، دیواره‌های عاری از همگی، ماده خشک قابل هضم و انرژی متابولیسمی تجزیه شیمیایی شدند. جهت بررسی انرژی ماده خشک علوفه، از

انالیز واریانس یک طرفه و برای بررسی اثر مرحله فنولوزی و اثر متقابل گونه و مرحله فنولوزی بر کیفیت علوفه از آزمون

(Repeated measures) استفاده شد. اثر مرحله فنولوزی بر کیفیت علوفه هر گونه معنادار بود (۰/۰۵). از نتایج

و برخی از نتایج نشان‌داد که در مرحله شکم‌دوم، کیفیت علوفه و وزن اندام برخی گونه‌های گندمیان به‌طور متوسط کاهش یافت.

واژه‌های کلیدی: کیفیت علوفه، فنولوزی، Avena fatica, Hordeum glaucum, Agropyron elongatum

1. دانش آموزه کارشناسی ارشد مرتع‌داری، دانشگاه آب و خاک، دانشگاه زابل
2. استاد، گروه مرتع و ارگینداری، دانشگاه آب و خاک، دانشگاه زابل
3. اجرای این پژوهش به کمک ملی و بین‌المللی و سرمایه‌گذاری داخلی و بین‌المللی دانشگاه زابل
4. دانشیار، گروه علوم زراعی، دانشگاه کشاورزی، دانشگاه زابل
ازبایی و متقانه کیفیت علوفه سه گونه از گندمیان در مراحل مختلف فنولیزی

مقدمه

در مراجع گونه‌های علوفه‌ای زراعی از گندمیان، به‌هم‌گان علفی و بوته‌ها و جای‌دادن‌ها که از نظر ارزش، دام‌های کرکچه، چندین کاهن در مرحله، مواد غذایی (بروتین‌های، انژیزی و بهبود مواد معده) مورد ناب‌خود را برای رشد، نیاز، و تولید مثل این گیاهان در یافت می‌کنند. اما ارزش غذایی گیاهان مرجع به گونه سن و مرحله رشد، انداز گیاهی، فصل روشی، اقلیم، به‌هم‌گان خاک و غیره تغییر می‌کند.

۱۳) برای مثال، مواد اثر اقلیم کیفیت علوفه، با مقایسه علوفه علوفه به گونه مرجع در هفت اقلیم مختلف گزارش شده است که بیشتر ترین کیفیت علوفه مرپتو به اقلیم بیشتر سردر مطول و کمترین آن مربوط به اقلیم نیمه خشک شکر می‌باشد.

مرحله فنولیزی گونه گیاه سه اقلیم مؤثر در ارزش غذایی گیاهان علوفه‌ای است. در مرحله رشد روپشی، علوفه گل، مقدار محتوای سولفی (بروتین‌های خام، فنده‌ها، نشاسته، زبوده‌ها و ترکیبات غذایی) در بالاترین حد هستند که با پیشروی مرحله رشد بالغ شدن آن و وارد شدن به مرحله کمون، محتوای سولفی به لبیزی افزایش می‌یابد. (غلوموز)، ۳۰ و میانگین. و انتقال مواد غذایی از گرده به رشد گاهی مخذولی که گل به خصوص شدن گیاهی و کاهش کیفیت آن (می‌یابد) ۱۰) بالاترین کیفیت علوفه مرپتو به مرحله اوتودیک دوره رشد روپش و پایین‌ترین میزان مرپتو (به‌هر بزرگداشت) در بالاترین دوره رشد (به‌جایی)۱۱) می‌یابد. (حذف گردن تغییرات زراعی علوفه‌ای آنها از مراحل مختلف و مدیریت چرا باید خواهد شد تا با اعمال مدیریت مناسب هم از علوفه کیفیت تولید و به‌هر بار شود و هم از چرا دام زمان حساس به چرا که منجر به اسید دیدگی ۱۰۰ متری گردن جهانی شود. (شانه). می‌یابد (خود).

 обществені і фізичні кількості суспензії в гідросферах відповідно до фаз випадків:

1. Agropyron elongatum
2. Hordeum glaucum
3. Hordeum vulgare

ازبایی و متقانه کیفیت علوفه سه گونه از گندمیان در مراحل مختلف فنولیزی

مقدمه

در مراجع گونه‌های علوفه‌ای زراعی از گندمیان، به‌هم‌گان علفی و بوته‌ها و جای‌دادن‌ها که از نظر ارزش، دام‌های کرکچه، چندین کاهن در مرحله، مواد غذایی (بروتین‌های، انژیزی و بهبود مواد معده) مورد ناب‌خود را برای رشد، نیاز، و تولید مثل این گیاهان در یافت می‌کنند. اما ارزش غذایی گیاهان مرجع به گونه سن و مرحله رشد، انداز گیاهی، فصل روشی، اقلیم، به‌هم‌گان خاک و غیره تغییر می‌کند.

۱۳) برای مثال، مواد اثر اقلیم کیفیت علوفه، با مقایسه علوفه علوفه به گونه مرجع در هفت اقلیم مختلف گزارش شده است که بیشتر ترین کیفیت علوفه مرپتو به اقلیم بیشتر سردر مطول و کمترین آن مربوط به اقلیم نیمه خشک شکر می‌باشد.

مرحله فنولیزی گونه گیاه سه اقلیم مؤثر در ارزش غذایی گیاهان علوفه‌ای است. در مرحله رشد روپشی، علوفه گل، مقدار محتوای سولفی (بروتین‌های خام، فنده‌ها، نشاسته، زبوده‌ها و ترکیبات غذایی) در بالاترین حد هستند که با پیشروی مرحله رشد بالغ شدن آن و وارد شدن به مرحله کمون، محتوای سولفی به لبیزی افزایش می‌یابد. (غلوموز)، ۳۰ و میانگین. و انتقال مواد غذایی از گرده به رشد گاهی مخذولی که گل به خصوص شدن گیاهی و کاهش کیفیت آن (می‌یابد) ۱۰) بالاترین کیفیت علوفه مرپتو به مرحله اوتودیک دوره رشد روپش و پایین‌ترین میزان مرپتو (به‌هر بزرگداشت) در بالاترین دوره رشد (به‌جایی)۱۱) می‌یابد. (حذف گردن تغییرات زراعی علوفه‌ای آنها از مراحل مختلف و مدیریت چرا باید خواهد شد تا با اعمال مدیریت مناسب هم از علوفه کیفیت تولید و به‌هر بار شود و هم از چرا دام زمان حساس به چرا که منجر به اسید دیدگی ۱۰۰ متری گردن جهانی شود. (شانه). می‌یابد (خود).

Downloaded from rangelandsrm.ir at 1:59 +0330 on Friday January 10th 2020
توضیحات برداشت

برداشت شده که ۹۰ نمونه خود مشابه آن گون ۱۵۰ گیاهی، ۱۵۰ نمونه مشابه آن گون ۱۵۰ گیاهی، ۱۵۰ نمونه رشد آزمایشی به صورت فاکتوریل ۲۳۹ در قالب طرح کاملاً تصادفی انجام شد. مدل طرح به صورت

\[
y = \mu + \alpha + \beta + e
\]

و برای هر گونه ۱۵۰ نمونه، ۱۵۰ نمونه رشد آزمایشی به صورت فاکتوریل ۲۳۹ در قالب طرح کاملاً تصادفی انجام شد. مدل طرح به صورت

\[
y = \mu + \alpha + \beta + e
\]

و برای هر گونه ۱۵۰ نمونه، ۱۵۰ نمونه رشد آزمایشی به صورت فاکتوریل ۲۳۹ در قالب طرح کاملاً تصادفی انجام شد. مدل طرح به صورت

\[
y = \mu + \alpha + \beta + e
\]

و برای هر گونه ۱۵۰ نمونه، ۱۵۰ نمونه رشد آزمایشی به صورت فاکتوریل ۲۳۹ در قالب طرح کاملاً تصادفی انجام شد. مدل طرح به صورت

\[
y = \mu + \alpha + \beta + e
\]

و برای هر گونه ۱۵۰ نمونه، ۱۵۰ نمونه رشد آزمایشی به صورت فاکتوریل ۲۳۹ در قالب طرح کاملاً تصادفی انجام شد. مدل طرح به صورت

\[
y = \mu + \alpha + \beta + e
\]

و برای هر گونه ۱۵۰ نمونه، ۱۵۰ نمونه رشد آزمایشی به صورت فاکتوریل ۲۳۹ در قالب طرح کاملاً تصادفی انجام شد. مدل طرح به صورت

\[
y = \mu + \alpha + \beta + e
\]

و برای هر گونه ۱۵۰ نمونه، ۱۵۰ نمونه رشد آزمایشی به صورت فاکتوریل ۲۳۹ در قالب طرح کاملاً تصادفی انجام شد. مدل طرح به صورت

\[
y = \mu + \alpha + \beta + e
\]

و برای هر گونه ۱۵۰ نمونه، ۱۵۰ نمونه رشد آزمایشی به صورت فاکتوریل ۲۳۹ در قالب طرح کاملاً تصادفی انجام شد. مدل طرح به صورت

\[
y = \mu + \alpha + \beta + e
\]

و برای هر گونه ۱۵۰ نمونه، ۱۵۰ نمونه رشد آزمایشی به صورت فاکتوریل ۲۳۹ در قالب طرح کاملاً تصادفی انجام شد. مدل طرح به صورت

\[
y = \mu + \alpha + \beta + e
\]

و برای هر گونه ۱۵۰ نمونه، ۱۵۰ نمونه رشد آزمایشی به صورت فاکتوریل ۲۳۹ در قالب طرح کاملاً تصادفی انجام شد. مدل طرح به صورت

\[
y = \mu + \alpha + \beta + e
\]

و برای هر گونه ۱۵۰ نمونه، ۱۵۰ نمونه رشد آزمایشی به صورت فاکتوریل ۲۳۹ در قالب طرح کاملاً تصادفی انجام شد. مدل طرح به صورت

\[
y = \mu + \alpha + \beta + e
\]

و برای هر گونه ۱۵۰ نمونه، ۱۵۰ نمونه رشد آزمایشی به صورت فاکتوریل ۲۳۹ در قالب طرح کاملاً تصادفی انجام شد. مدل طرح به صورت

\[
y = \mu + \alpha + \beta + e
\]

و برای هر گونه ۱۵۰ نمونه، ۱۵۰ نمونه رشد آزمایشی به صورت فاکتوریل ۲۳۹ در قالب طرح کاملاً تصادفی انجام شد. مدل طرح به صورت

\[
y = \mu + \alpha + \beta + e
\]

و برای هر گونه ۱۵۰ نمونه، ۱۵۰ نمونه رشد آزمایشی به صورت فاکتوریل ۲۳۹ در قالب طرح کاملاً تصادفی انجام شد. مدل طرح به صورت

\[
y = \mu + \alpha + \beta + e
\]

و برای هر گونه ۱۵۰ نمونه، ۱۵۰ نمونه رشد آزمایشی به صورت فاکتوریل ۲۳۹ در قالب طرح کاملاً تصادفی انجام شد. مدل طرح به صورت

\[
y = \mu + \alpha + \beta + e
\]

و برای هر گونه ۱۵۰ نمونه، ۱۵۰ نمونه رشد آزمایشی به صورت فاکتوریل ۲۳۹ در قالب طرح کاملاً تصادفی انجام شد. مدل طرح به صورت

\[
y = \mu + \alpha + \beta + e
\]

و برای هر گونه ۱۵۰ نمونه، ۱۵۰ نمونه رشد آزمایشی به صورت فاکتوریل ۲۳۹ در قالب طرح کاملاً تصادفی انجام شد. مدل طرح به صورت

\[
y = \mu + \alpha + \beta + e
\]

و برای هر گونه ۱۵۰ نمونه، ۱۵۰ نمونه رشد آزمایشی به صورت فاکتوریل ۲۳۹ در قالب طرح کاملاً تصادفی انجام شد. مدل طرح به صورت

\[
y = \mu + \alpha + \beta + e
\]

و برای هر گونه ۱۵۰ نمونه، ۱۵۰ نمونه رشد آزمایشی به صورت فاکتوریل ۲۳۹ در قالب طرح کاملاً تصادفی انجام شد. مدل طرح به صورت

\[
y = \mu + \alpha + \beta + e
\]

و برای هر گونه ۱۵۰ نمونه، ۱۵۰ نمونه رشد آزمایشی به صورت فاکتوریل ۲۳۹ در قالب طرح کاملاً تصادفی انجام شد. مدل طرح به صورت

\[
y = \mu + \alpha + \beta + e
\]

و برای هر گونه ۱۵۰ نمونه، ۱۵۰ نمونه رشد آزمایشی به صورت فاکتوریل ۲۳۹ در قالب طرح کاملاً تصادفی انجام شد. مدل طرح به صورت

\[
y = \mu + \alpha + \beta + e
\]

و برای هر گونه ۱۵۰ نمونه، ۱۵۰ نمونه رشد آزمایشی به صورت فاکتوریل ۲۳۹ در قالب طرح کاملاً تصادفی انجام شد. مدل طرح به صورت
توصیع نرمال است. برای اطمینان از توزیع نرمالیتی داده‌ها (با اموزن گلوموگراف- اسمیرنوف)، برای تجزیه و تحلیل داده‌ها از نرم‌افزار SAS استفاده گردید. جهت بررسی اثر گونه بر کیفیت علوفه از آنالیز واریانس یک طرفه (One way ANOVA) استفاده شد. اثر مرحله علوفه و اثر تمایل گونه و مرحله علوفه از آزمون ANOVA- Repeated measures (آزمون تکراری) استفاده شد. میانگین‌ها با استفاده از آزمون چند دامنه دانکن در سطح احتمال 0.05 مقایسه گردیدند.

نتایج

کیفیت علوفه

این گونه در مراحل مختلف علوفه قابل قبول بود. در مراحل مختلف علوفه باعث تغییر کیفیت و ارژش غذایی این گونه در دوره رشد می‌شود. درصد ماده خشک آن در مرحله پرده‌ای 38/96 % بیشترین و در مرحله روزنگی 43/32 % کمترین مقدار بود. درصد ماده خشک قابل قبول در مرحله 40/19 % بود. درصد ماده خشک در این رابطه مقدار 35/49 بود. درصد ماده خشک در مرحله پرده‌ای 40/22 % بود و در مرحله پرده‌ای 40/32 % مقدار ارزی قابل قبول در مرحله پرده‌ای 58/9 % و پرده‌ای 40/35 % مشاهده گردید. درصد ارزی قابل قبول در مرحله بزرگ، روزنگی و پرده‌ای برابر 13/47 %، 13/24 % و 13/47 % بود. مقدار ارزی متوسط در مراحل مختلف علوفه مقدار 35/94 بود. مقدار ارزی متوسط بیشتر از مراحل مختلف علوفه بود.

میلی متر خرد شدن و در نهایت مقدار 1300 میلی متر از هر هکتار آسیاب شده برای آزمایشات بعدی بهره‌برداری شد.

تجزیه شیمیایی و تعبیه آرزون غذایی گیاهان

این بخش از مطالعه، در آزمایشگاه تغذیه دام، دانشکده کشاورزی دانشگاه زابل انجام شد. ماده خشک (درصد ماده خشک) نمونه‌ها با استفاده از روش ایده‌آل شده توسط کارا (1996) اندازه‌گیری شد. برای اندازه‌گیری وزن روش کلیدال (1883) بر پایه اندازه‌گیری درصد اثر دستگاه نیمه اتوماتیک کلجکال (سال 1945) و Gerhardt، VAP (1991) با دستگاه فایبرساک (مدل 61 آلمان) و ضریب آن در 4/04 محاسبه شد. دوباره علوفه از هم سلوار طبق روش و سوست و همانرز (1991) با دستگاه فایبرساک (مدل 61 آلمان) اندازه‌گیری شد. درصد ماده خشک قابل هضم (DMD) با استفاده از رابطه (1) محاسبه شد (17). مقدار ارزی قابل هضم (DE) با استفاده از رابطه (2) تعیین گردیده (19).

\[
\text{DMD}\% = \frac{83}{54} - \frac{0}{824} \times (\text{ADF}\%) + 2 \times \frac{626}{44} \\
\text{ME} (\text{Mj/kg}) = \frac{17}{4} \times \text{DMD}\% - 2 \\
\text{DE} (\text{M cal/kg}) = 0.27 + 0.428 \times \text{DMD}\% \\
\text{DE\%} = \frac{0.27 + 0.428 \times \text{DMD}\%}{98.4} \times 100 \\
\text{ME} (\text{Mj/kg}) = \frac{17}{4} \times \text{DMD}\% - 2 \\
\text{DE}\% = \frac{0.27 + 0.428 \times \text{DMD}\%}{98.4} \times 100 \\
\text{ME} (\text{MJ/kg}) = 0.428 \times \text{DMD}\% - 2 \\
\]
جدول 1- تغییرات کیفیت غلظه در مرحلات مختلف فنولزی در مراتع بیلافی در گزه

<table>
<thead>
<tr>
<th>مرحله فنولزی</th>
<th>مجموع مراتع</th>
<th>بزرده</th>
<th>برضه</th>
<th>غلظه</th>
<th>روشی</th>
<th>کمترین کیفیت غلظه</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>125/16</td>
<td>175/88</td>
<td>2</td>
<td>38/34</td>
<td>38/32</td>
<td>38/34</td>
</tr>
<tr>
<td>4</td>
<td>38/22</td>
<td>68/88</td>
<td>2</td>
<td>38/34</td>
<td>38/32</td>
<td>38/34</td>
</tr>
<tr>
<td>6</td>
<td>51/24</td>
<td>74/88</td>
<td>2</td>
<td>38/34</td>
<td>38/32</td>
<td>38/34</td>
</tr>
<tr>
<td>8</td>
<td>54/25</td>
<td>74/88</td>
<td>2</td>
<td>38/34</td>
<td>38/32</td>
<td>38/34</td>
</tr>
<tr>
<td>10</td>
<td>60/26</td>
<td>76/88</td>
<td>2</td>
<td>38/34</td>
<td>38/32</td>
<td>38/34</td>
</tr>
</tbody>
</table>

جدول 2- تغییرات کیفیت غلظه در مرحلات مختلف فنولزی در مراتع بیلافی

<table>
<thead>
<tr>
<th>مرحله فنولزی</th>
<th>مجموع مراتع</th>
<th>بزرده</th>
<th>برضه</th>
<th>غلظه</th>
<th>روشی</th>
<th>کمترین کیفیت غلظه</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>125/16</td>
<td>175/88</td>
<td>2</td>
<td>38/34</td>
<td>38/32</td>
<td>38/34</td>
</tr>
<tr>
<td>4</td>
<td>38/22</td>
<td>68/88</td>
<td>2</td>
<td>38/34</td>
<td>38/32</td>
<td>38/34</td>
</tr>
<tr>
<td>6</td>
<td>51/24</td>
<td>74/88</td>
<td>2</td>
<td>38/34</td>
<td>38/32</td>
<td>38/34</td>
</tr>
<tr>
<td>8</td>
<td>54/25</td>
<td>74/88</td>
<td>2</td>
<td>38/34</td>
<td>38/32</td>
<td>38/34</td>
</tr>
<tr>
<td>10</td>
<td>60/26</td>
<td>76/88</td>
<td>2</td>
<td>38/34</td>
<td>38/32</td>
<td>38/34</td>
</tr>
</tbody>
</table>

کیفیت غلظه Agropyron elongatum

جدول 1- تغییرات کیفیت غلظه در مرحلات مختلف فنولزی در مراتع بیلافی

<table>
<thead>
<tr>
<th>مرحله فنولزی</th>
<th>مجموع مراتع</th>
<th>بزرده</th>
<th>برضه</th>
<th>غلظه</th>
<th>روشی</th>
<th>کمترین کیفیت غلظه</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>125/16</td>
<td>175/88</td>
<td>2</td>
<td>38/34</td>
<td>38/32</td>
<td>38/34</td>
</tr>
<tr>
<td>4</td>
<td>38/22</td>
<td>68/88</td>
<td>2</td>
<td>38/34</td>
<td>38/32</td>
<td>38/34</td>
</tr>
<tr>
<td>6</td>
<td>51/24</td>
<td>74/88</td>
<td>2</td>
<td>38/34</td>
<td>38/32</td>
<td>38/34</td>
</tr>
<tr>
<td>8</td>
<td>54/25</td>
<td>74/88</td>
<td>2</td>
<td>38/34</td>
<td>38/32</td>
<td>38/34</td>
</tr>
<tr>
<td>10</td>
<td>60/26</td>
<td>76/88</td>
<td>2</td>
<td>38/34</td>
<td>38/32</td>
<td>38/34</td>
</tr>
</tbody>
</table>

کیفیت غلظه Hordeum glaucum

جدول 1- تغییرات کیفیت غلظه در مرحلات مختلف فنولزی در مراتع بیلافی

<table>
<thead>
<tr>
<th>مرحله فنولزی</th>
<th>مجموع مراتع</th>
<th>بزرده</th>
<th>برضه</th>
<th>غلظه</th>
<th>روشی</th>
<th>کمترین کیفیت غلظه</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>125/16</td>
<td>175/88</td>
<td>2</td>
<td>38/34</td>
<td>38/32</td>
<td>38/34</td>
</tr>
<tr>
<td>4</td>
<td>38/22</td>
<td>68/88</td>
<td>2</td>
<td>38/34</td>
<td>38/32</td>
<td>38/34</td>
</tr>
<tr>
<td>6</td>
<td>51/24</td>
<td>74/88</td>
<td>2</td>
<td>38/34</td>
<td>38/32</td>
<td>38/34</td>
</tr>
<tr>
<td>8</td>
<td>54/25</td>
<td>74/88</td>
<td>2</td>
<td>38/34</td>
<td>38/32</td>
<td>38/34</td>
</tr>
<tr>
<td>10</td>
<td>60/26</td>
<td>76/88</td>
<td>2</td>
<td>38/34</td>
<td>38/32</td>
<td>38/34</td>
</tr>
</tbody>
</table>

کیفیت غلظه Avena fatua

جدول 1- تغییرات کیفیت غلظه در مرحلات مختلف فنولزی در مراتع بیلافی

<table>
<thead>
<tr>
<th>مرحله فنولزی</th>
<th>مجموع مراتع</th>
<th>بزرده</th>
<th>برضه</th>
<th>غلظه</th>
<th>روشی</th>
<th>کمترین کیفیت غلظه</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>125/16</td>
<td>175/88</td>
<td>2</td>
<td>38/34</td>
<td>38/32</td>
<td>38/34</td>
</tr>
<tr>
<td>4</td>
<td>38/22</td>
<td>68/88</td>
<td>2</td>
<td>38/34</td>
<td>38/32</td>
<td>38/34</td>
</tr>
<tr>
<td>6</td>
<td>51/24</td>
<td>74/88</td>
<td>2</td>
<td>38/34</td>
<td>38/32</td>
<td>38/34</td>
</tr>
<tr>
<td>8</td>
<td>54/25</td>
<td>74/88</td>
<td>2</td>
<td>38/34</td>
<td>38/32</td>
<td>38/34</td>
</tr>
<tr>
<td>10</td>
<td>60/26</td>
<td>76/88</td>
<td>2</td>
<td>38/34</td>
<td>38/32</td>
<td>38/34</td>
</tr>
</tbody>
</table>

پیشنهاد می‌شود، برای کمک به بهبود کیفیت غلظه، از آزمایشات آزمایشگاهی استفاده کنیم و در مراحل مختلف فنولزی این گونه بهترین کیفیت غلظه را نشان دهند.
مقایسه کیفیت علوفه گونه‌های A. elongatum و A. fatua در محیط مختلف آب‌سوزی بستگی به مقدار مصرف محیطی دارد. درصد مصرف محیطی فیتومسک (df) در گونه‌های A. elongatum و A. fatua برابر با 1/14 و 1/24 افزایش می‌یابد. درصد مصرف محیطی در محیط‌های مختلف بین A. elongatum و A. fatua متفاوت است. درصد مصرف محیطی در محیط‌های مختلف بین A. elongatum و A. fatua متفاوت است. درصد مصرف محیطی در محیط‌های مختلف بین A. elongatum و A. fatua متفاوت است. درصد مصرف محیطی در محیط‌های مختلف بین A. elongatum و A. fatua متفاوت است. درصد مصرف محیطی در محیط‌های مختلف بین A. elongatum و A. fatua متفاوت است. درصد مصرف محیطی در محیط‌های مختلف بین A. elongatum و A. fatua متفاوت است. درصد مصرف محیطی در محیط‌های مختلف بین A. elongatum و A. fatua متفاوت است. درصد مصرف محیطی در محیط‌های مختلف بین A. elongatum و A. fatua متفاوت است.
جدول 2- مقایسه کیفیت علوفه گونه‌های گیاهی مطالعه شده در مزارع بیلایی آسیله کلات چنار، شهرستان درگز

<table>
<thead>
<tr>
<th>F</th>
<th>مجموع مرغاب</th>
<th>کیفیت علوفه</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>گلابی</td>
<td>گلوکم</td>
</tr>
</tbody>
</table>

H. glaucum
- قابل هضم در ۶۲ درصد و A. elongatum در ۷۳ درصد (مواد سیستم‌گریزی، در صورت مصرف به‌طور یکسان در مزارع بیلایی گلابی و گلوکم درصد درصد افزایش می‌دهد).

A. elongatum
- درصد مصرف به‌طور یکسان در مزارع بیلایی گلابی و گلوکم درصد درصد افزایش می‌دهد.

A. fatua
- درصد مصرف گلابی درصد درصد افزایش می‌دهد.

همتای‌شناسی

<table>
<thead>
<tr>
<th>مقدار انرژی معادلی (MJ/kg)</th>
<th>%</th>
<th>Mj/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>17/9</td>
<td>17/9</td>
<td>H. glaucum</td>
</tr>
</tbody>
</table>

اثر مصرفی گلابی و مرحله فنولوزی بر کیفیت علوفه

درصد مصرفی گلابی که در سطح مرحله فنولوزی مصرف می‌شود، یا درصد سیستم‌گریزی (۷/۸۵ درصد) و واقعی خاصیت درصد سیستم‌گریزی (۸۵/۷ درصد) درصد درصد افزایش می‌دهد.

میزان پروتئین مصرف

درصد مصرف گلابی درصد درصد افزایش می‌دهد.

درصد درجه سطح ترشی

درصد مصرف گلابی درصد درصد افزایش می‌دهد.

درصد خاصیت درصد درصد افزایش می‌دهد.

درصد درجه سطح ترشی

درصد مصرف گلابی درصد درصد افزایش می‌دهد.

درصد درجه سطح ترشی

درصد مصرف گلابی درصد درصد افزایش می‌دهد.

درصد درجه سطح ترشی

درصد مصرف گلابی درصد درصد افزایش می‌دهد.

درصد درجه سطح ترشی

درصد مصرف گلابی درصد درصد افزایش می‌دهد.

درصد درجه سطح ترشی

درصد مصرف گلابی درصد درصد افزایش می‌دهد.

درصد درجه سطح ترشی

درصد مصرف گلابی درصد درصد افزایش می‌دهد.

درصد درجه سطح ترشی

درصد مصرف گلابی درصد درصد افزایش می‌دهد.

درصد درجه سطح ترشی

درصد مصرف گلابی درصد درصد افزایش می‌دهد.

درصد درجه سطح ترشی

درصد مصرف گلابی درصد درصد افزایش می‌دهد.

درصد درجه سطح ترشی

درصد مصرف گلابی درصد درصد افزایش می‌دهد.

درصد درجه سطح ترشی

درصد مصرف گلابی درصد درصد افزایش می‌دهد.

درصد درجه سطح ترشی

درصد مصرف گلابی درصد درصد افزایش می‌دهد.

درصد درجه سطح ترشی

درصد مصرف گلابی درصد درصد افزایش می‌دهد.

درصد درجه سطح ترشی

درصد مصرف گلابی درصد درصد افزایش می‌دهد.

درصد درجه سطح ترشی

درصد مصرف گلابی درصد درصد افزایش می‌دهد.

درصد درجه سطح ترشی

درصد مصرف گلابی درصد درصد افزایش می‌دهد.

درصد درجه سطح ترشی

درصد مصرف گلابی درصد درصد افزایش می‌دهد.

درصد درجه سطح ترشی

درصد مصرف گلابی درصد درصد افزایش می‌دهد.

درصد درجه سطح ترشی

درصد مصرف گلابی درصد درصد افزایش می‌دهد.

درصد درجه سطح ترشی

درصد مصرف گلابی درصد درصد افزایش می‌دهد.

درصد درجه سطح ترشی

درصد مصرف گلابی درصد درصد افزایش می‌دهد.

درصد درجه سطح ترشی

درصد مصرف گلابی درصد درصد افزایش می‌دهد.

درصد درجه سطح ترشی

درصد مصرف گلابی درصد درصد افزایش می‌دهد.

درصد درجه سطح ترشی

درصد مصرف گلابی درصد درصد افزایش می‌دهد.

درصد درجه سطح ترشی

درصد مصرف گلابی درصد درصد افزایش می‌دهد.

درصد درجه سطح ترشی

درصد مصرف گلابی درصد درصد افزایش می‌دهد.
جدول 5- نتایج تیپیت عقلقه در گونه‌های مطالعه شده در سه مرحله فنولوژیکی در مراتع بیلایقی، آسیه‌ی کلائه، شهرستان درگز

<table>
<thead>
<tr>
<th>گونه‌گیاهی</th>
<th>مرحله</th>
<th>ماده خشک (%)</th>
<th>دیواره سلولی (سلولون)</th>
<th>فلزی (مرکه)</th>
<th>ماده خشک (لب)</th>
<th>نژاد پسندی (ل)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halopyrum elongatum</td>
<td>Agropyron elongatum</td>
<td>16.0</td>
<td>43.7</td>
<td>5.2</td>
<td>27.4</td>
<td>8.3</td>
</tr>
<tr>
<td>Hordeum glaucum</td>
<td></td>
<td>16.0</td>
<td>43.7</td>
<td>5.2</td>
<td>27.4</td>
<td>8.3</td>
</tr>
<tr>
<td>Avena fatua</td>
<td></td>
<td>16.0</td>
<td>43.7</td>
<td>5.2</td>
<td>27.4</td>
<td>8.3</td>
</tr>
</tbody>
</table>

بحث و نتیجه‌گیری

تعیین ارزش غذایی و کیفیت عقلقه گیاهان مرتعی، یکی از ملزومات مربوط به محاسبات کشاورزی، بوده‌است. این دستگاه عامل کلیدی در تعیین کیفیت عقلقه و در تولید محصولات کشاورزی می‌باشد. در این تحقیق، کیفیت عقلقه گیاهان مرتعی از نظر غذایی و کیفیتی، بر اساس ارزیابی فیزیولوژیکی، تعیین شده است. در این تحقیق، کیفیت عقلقه گیاهان مرتعی از نظر غذایی و کیفیتی، بر اساس ارزیابی فیزیولوژیکی، تعیین شده است.

با پیشرفت مراحل فنولوژیکی، رشد در مراحل خشک، در هر سه گونه از این مراحل افزایش یافته است. افزایش در مرحله طبیعی، بخشی از این افزایش را به خود برمی‌گیرد. این افزایش در مرحله طبیعی، بخشی از این افزایش را به خود برمی‌گیرد. این افزایش در مرحله طبیعی، بخشی از این افزایش را به خود برمی‌گیرد. این افزایش در مرحله طبیعی، بخشی از این افزایش را به خود برمی‌گیرد.

