بررسی دامنه اکولوژیکی Trifolium repens و Phlomis cancellata به برخی متغیرهای محیطی با استفاده از تابع HOF

مطالعه موردی: مرتع حوزه آبخیز گلنرود

فهرست زیربرنامه قاسیملی دباتی تبلیغ و سید جلیل علوی

تاریخ دریافت: 1395/10/20 - تاریخ تصویب: 1395/12/20

چکیده

تحقیق حاضر در مرتع حوزه آبخیز گلنرود در استان مازندران انجام شد. هدف اصلی این پژوهش بررسی دامنه اکولوژیک Trifolium repens و Phlomis cancellata به برخی متغیرهای محیطی با استفاده از تابع HOF در طول گردایان متغیرهای محیطی یک پاتاک برابری مربوط در طول گردایان ارتفاعی مستقر شدند. نمونه‌برداری به روش تصادفی و تصادفی ارتفاع و شبیه و جهت ثبت شدند.

دولتیک اینام جه. در هر سطح نمونه‌گیری فراوانی دو گونه Siسمتیاتیک انجام شد. در هر نمونه کریتیقل از 20-30 سانتی‌متری در هر پاتاک برداشت شدند. در هر نمونه pH، EC، کربن آلی، نیتروژن و بافت خاک اندراگری سطح. برای مطالعه منحنی پاسخ و بهینه اکولوژیک در ارتباط با متغیرهای محیطی از تابع HOF با پراکش دومه‌ای استفاده شد. داده‌ها به وسیله نرم‌افزار ANOVAR R-ver.3.0.2 آنالیز شدند. گونه T. repens و Ph. cancellata استفاده شد. داده‌ها به وسیله نرم‌افزار ANOVAR R-ver.3.0.2 آنالیز شدند. گونه T. repens و Ph. cancellata استفاده شد. داده‌ها به وسیله نرم‌افزار ANOVAR رتبه‌بندی 2975 متراً و برای T. repens و Ph. cancellata نسبت به ارتفاع 2975 متراً و برای T. repens و Ph. cancellata به صورت نامتقارن و جوله‌دار بود. منحنی پاسخ تابع HOF و اکولوژیکی، بهینه اکولوژیکی، منحنی پاسخ T. repens و Ph. cancellata

واژه‌های کلیدی: تابع HOF، دامنه اکولوژیکی، بهینه اکولوژیکی، منحنی پاسخ T. repens و Ph. cancellata

1- دانشجوی کارشناسی ارشد دانشگاه تربیت مدرس
2- دانشیار دانشگاه تربیت مدرس dianatig@modares.ac.ir
3- استاد دانشگاه تربیت مدرس

Downloaded from rangelandsrm.ir at 16:18 +0430 on Thursday August 1st 2019
مقدمه

هنگامی که دانش آکولوژیک برکه گونه شناخته شود، حضور گونه در یک روشگاه ویژه با تبعیض شرایط روشگاهی (خاکی و یاقوتی) آن ایجاد پیشینه بیشتر است. و بالعکس می‌توان یک حضور یک گونه در یک روشگاه بطور غیر مستقیم به شرایط روشگاهی آن یاد برد (۲۳). هدف از مطالعه زندگی گونه‌های محیطی، شناسایی عوامل پیشگویی مهم در روشگاه آن‌ها و تعبیه عوامل مؤثر بر روشی و پراکنش آن‌ها است از استفاده در استوارت‌های این قبیل بررسی‌ها، در طرح‌های اصلاح، احیاء و مدیریت مراتع اقتصادی لازم بر می‌آید (۲۰، ۲۱ و ۲۲) از بین عوامل محیطی فاکتور توبوگرافی و اقلیمی را موثر بر پراکنش گونه‌های محیطی در مناطق محیطی واقعی و از این میان عامل ارتقای روشگاهین عامل بر استقرار و پراکنش گونه‌ها گواهی دارد. این گونه گواهی در بخش‌های محیطی و مشخصی از هر گردابیان بهطور مؤثر عمل می‌نماید و در این محدوده مناسب گونه می‌تواند بقای بادیان و جمعیت برگری را تشکیل دهد و به حداکثر قرارگیری بررسی در خارج از این محیط همکار شود، متحمل فشارهای فراوانی عوامل آکولوژیک می‌شود. محدوده این‌ها، اکولوژیکی آن گونه از تغییر می‌نماید (۲۰). زندگی هر موجود زنده می‌تواند بیش از حد پایینی و بالایی از شرایط بوشسفات‌ها با محیطیصورت گیرد. بین این دو مرز یک حد مطلوب یا بی‌پنهود وجود دارد که فعالیت موجود زنده در آن موقت‌ها بی‌خیال می‌گردد. این‌ها بین این دو حد پایینی و بالایی از شرایط بوشسفات‌ها، دانش‌آموزانی با میاند بوشسفات‌های نامیده می‌شود. دانش‌آموزانی بوشسفاتی در تغییر عکس العمل گوئی از "اتباع گلدادر" محاسبه می‌شود. از در بوشسفات‌وا روی گیاهی تحلیل رژیمی برای برآورد پارامترهای اکولوژیکی مورد نظر، برای مثال مقاوم به‌پنهنه و دانش‌آموزانی گونه استفاده می‌شود (۲۱). عکس العمل گونه در زمان و مکان ناشی از عوامل مختلف می‌باشد، در نهایت به‌خاطر ایجاد نیاز به مدل‌های تغییر با راه‌حل می‌باشد و به توصیف نماید. عکس العمل یک گونه به متغیرهای محیطی با استفاده از آن به‌صورت مشاهده شده از تغییر

3- Generalized Linear Model
4- Generalized Liner Model

Phlomis cancellata

"به برمختی می‌توان فقط، Trifolium repens

Phlomis cancellata Bunge."
یک روش مؤثر برای این هدف می‌باشد (۲۶) مختصی باشگاه توزیده گونه (فراوانی بیش از ۴ درصد) در شرایط در برابر HOF بررسی شده و نتایج نشان داد که بیشتر گونه‌ها از مدل نک تای چوپدار تبعیت کردن (۳۱) در مطالعه روابط گونه و محتوی از میزان مختلف از عملکرد استفاده می‌شود. اما در اکثر مراجع از داده‌های کیفی منظور استفاده شده و توجه انگیز به سایر معیارهای صورت گرفته است (۱۵). به این دلیل که مختصی‌های از داده‌های حضور – غیاب در میزان زیباتر بوده و شامل یک راه‌حل مناسب می‌دهد که تفسیر آن ها آسان است (۷). در مطالعه دیگر Poa و Festuca ovina در مقایسه دامنه اکولوژیک دو گونه به برخی معیارهای محیطی با استفاده از تابع HOF نیز از داده‌های فراوانی گونه‌ها برای ارزیابی دامنه Poa bulbosa L. و Festuca ovina L. و اکولوژیک دو گونه HOF استفاده شد (۷۲). با توجه به اینکه مطالعه روابط گونه و محیط تاثیر گرداننده‌ی محیطی بر شکل عکس عمل، دامنه و بهبود اکولوژیک گونه‌های کیفی‌هایی در اکولوژی مربع از همیت خاصی برخوردار می‌باشد این تحقیق با هدف مقایسه‌ی مقدار بهبود و دامنه اکولوژیک گونه‌های دارویی و T. Repens و Ph. cancellata بر همیت در مراحل جوزه آبخیز گلندندرود صورت گرفته است.

مواد و روش‌ها

معنی‌مندی مدل طراحی

تحقیق حاضر در تبیه‌ای روبشی گونه در شمال ایران استان‌های شرقی به‌شکل به‌جام خود روند و در جوزه آبخیز گلندندرود در ه (۲۶ تا ۵۰) درصد می‌باشد و ۳۴ درصد می‌باشد و ۳۱ درصد می‌باشد و ۲۹ درصد می‌باشد و ۲۷ درصد می‌باشد و ۲۶ درصد می‌باشد و ۲۵ درصد می‌باشد و ۲۴ درصد می‌باشد و ۲۳ درصد می‌باشد و ۲۲ درصد می‌باشد و ۲۱ درصد می‌باشد و ۲۰ درصد می‌باشد و ۱۹ درصد می‌باشد و ۱۸ درصد می‌باشد و ۱۷ درصد می‌باشد و ۱۶ درصد می‌باشد و ۱۵ درصد می‌باشد و ۱۴ درصد می‌باشد و ۱۳ درصد می‌باشد و ۱۲ درصد می‌باشد و ۱۱ درصد می‌باشد و ۱۰ درصد می‌باشد و ۹ درصد می‌باشد و ۸ درصد می‌باشد و ۷ درصد می‌باشد و ۶ درصد می‌باشد و ۵ درصد می‌باشد و ۴ درصد می‌باشد و ۳ درصد می‌باشد و ۲ درصد می‌باشد و ۱ درصد می‌باشد و ۰ درصد می‌باشد.

اقتصاد نمایشگاه تابع می‌باشد و اکثریت گونه‌ها به‌طور چهار محله که دارای ارتفاع آن ۱۹۰۰ و حداقل ارتفاع آن ۳۰۰ متر از سطح دریا و میانگین پارش سالانه آن ۶۰۰ میلی‌متر می‌باشد (۱۷).
Phlomis cancellata
Trifolium repens

Onobrychis cornuta- Festuca ovina, Bromus tomentellus, Bromus tomentellus- Festuca ovina, Achnile milfolium, Achnile milfolium- Festuca ovina, Astragalus sp

\[
A = \cos(45\alpha + \gamma)
\]
ناشریه علمی پژوهشی منابع سال دوازدهم، شماره دوم، تابستان 1397

تهیه و تحلیل آزمایش‌های داده‌ها

یک نمونه مورد مطالعه میانگین‌سازی برای و درجه حرارت سالانه

تعیین شد.

وابستگی جستجو، جهت بررسی و شناسایی مورد مطالعه، گیاهانی دارای متغیرهای مختلف. به‌طور مشهور، مطالعه مورد بررسی، جمع‌آوری گیاهان گیاهی صورت کرده. جمع‌آوری گیاهان را در اردبیشت ماه 1392 از یک محیط مختلف مطالعه انجام شد. نمونه‌های جمع‌آوری شده از سه بخش اصلی، فلور ایران، رده‌بندی گیاهان، رسته‌ها ایران. فرهنگ‌نامه گیاهان ایران و سایر منابع به‌طور دقیق مورد شناسایی قرار گرفتند. پس از ثبت داده‌های فراوانی گونه و اندازه‌گیری متغیرهای تیپوگرافی از تابع (18) HOF به‌منظور بررسی شکل منحی عکس عمل گونه‌های گیاهی مورد نظر به میزان صورت از متغیرهای محیطی به‌طور یکجاگاه استفاده شد. به‌منظور بررسی تفاوت مدل به‌عنوان در داده‌های HOF و بررسی مقادیر بهینه و دانه‌های اکولوژیکی گونه از سه HOF استفاده شد. از (20) در ترم‌های HOF مقادیر (3) به‌منظور تعیین مدل به‌عنوان در برخی AIC مقادیر به‌منظور تعیین مناسب‌ترین مدل در برخی منحی عکس العمل HOF یاد می‌باشد. در منحی‌های عکس العمل T. repens در معادلات اولین چهار عملکرد است. علت مقادیر از گردیدن که در ان گونه‌های دارای بیشترین احتیاج واقعی یا فراوانی باید بر اساس خاص می‌باشد. مقادیر بهینه گونه به طریق منحی‌های پایه‌ای به مدل آن‌ها متشکل از این مقدار که مقادیر بهینه گونه برای تیپوگرافی است مربوط به مدل منحی‌پایه گونه می‌باشد (16).

مدل 1) روند معنی‌داری در زمان و مکان وجود ندارد.

مراتب:

\[y = M \left(\frac{1}{1+e^{ax}} \right) \]

رابطه 3)

شامل روند افزایش یا کاهشی که در آن مقدار

۱۲۸۰۱۹۲۲۵-۲۶۲۵ و ۲۱۲۵-۲۹۷۵ متر می‌باشد (شکل ۳). در حالی که

۱۹۸

رابطه ۱) شامل روند افزایش یا کاهشی که در آن مقدار

مقدار ارتقاء در طراحی

منحی‌پایه از طرح دریا

\[y = M \left(\frac{1}{1+e^{ax}} \right) \]

رابطه ۴)

شامل روند افزایش یا کاهشی که در آن مقدار

۱۲۸۰۱۹۲۲۵-۲۶۲۵ و ۲۱۲۵-۲۹۷۵ متر می‌باشد (شکل ۳). در حالی که

۱۹۸
به برخی متغیرهای محیطی نسبت به این متغیر به \(Ph. \ cancellata \) نسبت به متغیر شیب می‌باشد و این گونه نسبت به مدل 1 رابطه ۱ و جدول ۲ می‌باشد و این گونه نسبت به این متغیر عكس العمل می‌باشد. بنابراین، نشان دهنده (شکل ۲) و در این مقدار به‌هم‌هسته مشخصی نسبت به این متغیر نمی‌باشد.

جدول ۱ - مقدار معیار اطلاعات آماری (AIC) مربوط به مدل‌های ۱ تا ۵ برای داده‌های به‌دست آمده با استفاده از متغیرها

<table>
<thead>
<tr>
<th></th>
<th>مدل ۱</th>
<th>مدل ۲</th>
<th>مدل ۳</th>
<th>متغیر</th>
<th>کننده</th>
</tr>
</thead>
<tbody>
<tr>
<td>ارتفاع</td>
<td>۱۸۷/۴۳</td>
<td>۱۸۷/۴۱</td>
<td>۱۸۷/۴۱</td>
<td>۲۱۱</td>
<td>۲۱۱</td>
</tr>
<tr>
<td>شیب</td>
<td>۲۱/۲۶</td>
<td>۲۱/۲۴</td>
<td>۲۱/۲۴</td>
<td>۲۱۱</td>
<td>۲۱۱</td>
</tr>
<tr>
<td>جهت</td>
<td>۲۱۱</td>
<td>۲۱۱</td>
<td>۲۱۱</td>
<td>۲۱۱</td>
<td>۲۱۱</td>
</tr>
<tr>
<td>شن</td>
<td>۲۱۱</td>
<td>۲۱۱</td>
<td>۲۱۱</td>
<td>۲۱۱</td>
<td>۲۱۱</td>
</tr>
<tr>
<td>رس (درصد)</td>
<td>۲۱۱</td>
<td>۲۱۱</td>
<td>۲۱۱</td>
<td>۲۱۱</td>
<td>۲۱۱</td>
</tr>
<tr>
<td>رنگ</td>
<td>۱۹۵/۱۸</td>
<td>۱۹۵/۱۸</td>
<td>۱۹۵/۱۸</td>
<td>۲۱۱</td>
<td>۲۱۱</td>
</tr>
<tr>
<td>pH</td>
<td>۲۱۱</td>
<td>۲۱۱</td>
<td>۲۱۱</td>
<td>۲۱۱</td>
<td>۲۱۱</td>
</tr>
<tr>
<td>یارک (درصد)</td>
<td>۲۱۱</td>
<td>۲۱۱</td>
<td>۲۱۱</td>
<td>۲۱۱</td>
<td>۲۱۱</td>
</tr>
<tr>
<td>میانگین دما</td>
<td>۲۱۱</td>
<td>۲۱۱</td>
<td>۲۱۱</td>
<td>۲۱۱</td>
<td>۲۱۱</td>
</tr>
<tr>
<td>میانگین بارش</td>
<td>۲۱۱</td>
<td>۲۱۱</td>
<td>۲۱۱</td>
<td>۲۱۱</td>
<td>۲۱۱</td>
</tr>
</tbody>
</table>

**نتایج به‌دست آمده نشان داد که مدل مناسب برای \(Ph. \ cancellata \) نسبت به متغیر شیب مدل ۴ (راهنگ) است و دامنه اکوژولوژیک این گونه ۴۰/۰-۱۰۵ و مقدار به‌هم‌هسته این گونه ۲۱۷/۲ درصد است در حالی که عکس العمل
منحني یکسیکال حیاتی (Ph. cancellata) و T. repens مدل 3 (رباطه 4) به ترتیب درصد شن خاک به صورت بهینه کاهشی بوده است (شکل 5). و دامنه اکولوزیکی هر گونه به ترتیب برای شدید سفید 39-29 و برای گوش به 36-29 درصد و مقدار بهینه برای هر گونه به ترتیب 39 و 72 (جدول 2).

متغیر جهت دامنه

با توجه به مقدار AIC برای هر دو گونه Ph. cancellata و T. repens و cancellata است یعنی گونه‌ها عكسی عمل نمی‌نمایند و یک‌واختی به متغیر جهت نشان داده‌اند. در نتیجه متغیر جهت بر احتمال حضور این گونه‌ها اثری نداشته است. با توجه داشت که برای جهت نمی‌توان مقدار برداری و دامنه اکولوزیکی تعیین نمود (شکل 4).

متغیر درصد شن

و مقدار بهینه آن 7-6-27 و 24 درصد بوده است. رابطه به دست آمده به صورت دلی است (جدول 3). عكسی عمل که 39 درصد (رباطه 4) می‌باشد که نشان دهنده بی‌تاثیر repens مدل 1 (رباطه 3) به ترتیب درصد شن خاک به صورت بهینه کاهشی بوده است (شکل 5). و دامنه اکولوزیکی هر گونه به ترتیب برای شدید سفید 39-29 و برای گوش به 36-29 درصد و مقدار بهینه برای هر گونه به ترتیب 39 و 72 (جدول 2).

متغیر درصد رس

برازش نشان می‌دهد که بهترین مدل برای Ph. cancellata عكسی عمل گونه T. repens مدل 3 (رباطه 4) می‌باشد (شکل 6).
(شکل ۷) رفتار هر دو گونه نسبت به این متغیر هم‌نوا افرایشی است (شکل ۷). گونه دارای مقدار دامنه اکولوژیک ۰/۲-۵ درصد و بهینه اکولوژیکی ۰/۵-۱ درصد می‌باشد و مقدار دامنه اکولوژیک ۰/۴-۲/۸ درصد و بهینه اکولوژیکی آن ۰/۵-۷ درصد می‌باشد (جدول ۲). (شکل ۷).

Phlomis cancellata و *Trifolium repens* منجر به درصد سیل‌های در اساس نتایج به‌دست‌آمده از (جدول ۱) به‌طور اکثریت مدل برای هر دو گونه مدل ۲ (رابطه ۳) است که با توجه به

![نمودار ۷- برآورد نابع HOF به متغیر رس](image1)

![نمودار ۶- برآورد نابع HOF به متغیر رس](image2)

متغیر کوئین آلی خاک

نتایج حاصل از تابع HOF نشان داد که افزایش یا کاهش میزان کوئین آلی خاک بر احتمال حضور هر دو گونه هیچ اثری نداشته است و مدل مناسب برای هر دو گونه مدل ۱ (رابطه ۲) می‌باشد (شکل ۸) و این گونه نسبت به این متغیر عکس العمل معنی‌داری نشان نداده (شکل ۸) و دارای مقادیر بهینه مشخصی نسبت به این متغیر نمی‌باشد.

Phlomis cancellata و *Trifolium repens* می‌تواند منجر به افزایش حضور هر دو گونه باشد.
جدول ۲- مقدار بر آماره‌های توصیفی متغیرهای مورد بررسی، مقدار بهبود و دامنه اکولوژیک در گونه Trifolium repens و Phlomis cancellata

<table>
<thead>
<tr>
<th>متغیر</th>
<th>دامنه اکولوژیک</th>
<th>مقدار بهبود</th>
<th>دامنه</th>
<th>واحد</th>
<th>ارتفاع از سطح دریا (متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>شیب (پرده)</td>
<td>۰-۱۰</td>
<td>۲۹۷۵-۲۰۱۵</td>
<td>۲۰۱۰-۲۹۷۵</td>
<td>ریس</td>
<td>۰-۱۵</td>
</tr>
<tr>
<td>جهت (پرده)</td>
<td>۰-۱۰</td>
<td>۳۶۴-۲۹۵</td>
<td>۲۹۵-۳۶۴</td>
<td>سن</td>
<td>۰-۱۵</td>
</tr>
<tr>
<td>شن (پرده)</td>
<td>۰-۱۰</td>
<td>۳۶۴-۲۹۵</td>
<td>۲۹۵-۳۶۴</td>
<td>سن</td>
<td>۰-۱۵</td>
</tr>
<tr>
<td>بیانکی کلی (پرده)</td>
<td>۰-۱۰</td>
<td>۳۶۴-۲۹۵</td>
<td>۲۹۵-۳۶۴</td>
<td>سن</td>
<td>۰-۱۵</td>
</tr>
<tr>
<td>گیاهان اکولوژیکی</td>
<td>۰-۱۰</td>
<td>۳۶۴-۲۹۵</td>
<td>۲۹۵-۳۶۴</td>
<td>سن</td>
<td>۰-۱۵</td>
</tr>
<tr>
<td>(pH)</td>
<td>۰-۱۰</td>
<td>۳۶۴-۲۹۵</td>
<td>۲۹۵-۳۶۴</td>
<td>سن</td>
<td>۰-۱۵</td>
</tr>
<tr>
<td>نیتروژن کلی (فیتو)</td>
<td>۰-۱۰</td>
<td>۳۶۴-۲۹۵</td>
<td>۲۹۵-۳۶۴</td>
<td>سن</td>
<td>۰-۱۵</td>
</tr>
<tr>
<td>منحني (دما)</td>
<td>۰-۱۰</td>
<td>۳۶۴-۲۹۵</td>
<td>۲۹۵-۳۶۴</td>
<td>سن</td>
<td>۰-۱۵</td>
</tr>
<tr>
<td>منحني (رطوبت)</td>
<td>۰-۱۰</td>
<td>۳۶۴-۲۹۵</td>
<td>۲۹۵-۳۶۴</td>
<td>سن</td>
<td>۰-۱۵</td>
</tr>
<tr>
<td>منحني (ارض)</td>
<td>۰-۱۰</td>
<td>۳۶۴-۲۹۵</td>
<td>۲۹۵-۳۶۴</td>
<td>سن</td>
<td>۰-۱۵</td>
</tr>
<tr>
<td>متغیر پاسخ</td>
<td>Trifolium repens</td>
<td>Phlomis cancellata</td>
<td>Trifolium repens</td>
<td>Phlomis cancellata</td>
<td>Trifolium repens</td>
</tr>
</tbody>
</table>

شکل ۹- برآورش تابع HOF به منحني کرون آلی

یک نواخت می‌باشد.

منحني درصد نیتروژن کل

تابع نشان داد که مدل مناسب برای برآورش pH منحني عکس العلی دو گونه مورد مطالعه به منحني خاک مدل (۱ رابطه ۲) می‌باشد. همانطور که در (شکل ۱۰) نشان داده شده است این منحني تابع منحني دایره بر پاکش دو گونه نشان دهنده و بالاابراش و کاهش این پارامتر تفاوت معنی‌داری در احتمال حضور گونه رخ نداده است و منحني پاسخ این گونه نسبت به این پارامتر به صورت خطی صورت می‌گیرد.

شکل ۸- برآورش تابع EC به منحني پاسخ
حرارت احتمال حضور این گونه افرازیش بیشتر بوده است و دامنه اگلوژیک و مقدار بهینه در جر طرح حرارت برای این گونه به ترتیب 7-10/67 درجه سانتی‌گراد می‌باشد در حالی که در مدل 5 (ریبو) 2/77 درجه سانتی‌گراد و مقدار بهینه این گونه 17/58 درجه سانتی‌گراد می‌باشد. در نتیجه این دو گونه دارای مقدار بهینه و دامنه بوم‌شاخص متفاوتی نسبت به این منتظر می‌باشند (جدول 2) (شکل 13).

منتخب میانگین بارش سالانه

استفاده از تابع HOF نشان داد که مدل مناسب برای هر دو گونه برای این منتخب مدل 5 (ریبو) 6/7 است، دامنه اگلوژیک هر دو گونه حدوداً یکی است و مقدار بهینه میانگین بارش برای گونه T. repens 536 میلی‌متر و برای گونه Ph. cancellata 532 میلی‌متر است (جدول 3) (شکل 12).

منتخب میانگین دمای سالانه

نتایج حاصل از تابع HOF نشان داد که گونه T. repens از مدل 2 پیروی می‌کند، که با افرازیش میزان درجه
بحث و تنبیه‌گری

این بخش از مقاله به منظور بررسی اینکه منحنی عکسی عمل گونه‌های HOF نسبت به متفاوت‌های محیطی مورد بررسی از نوع کنکات و متفاوت است مورد ارزیابی شده است (۲۴). همانطور که در قسمت نتایج به آن اشاره شد گونه T. repens نسبت به متفاوت ارتفاع رفتار هموگالی کاهش دارد و در طبقات ارتقاء‌دار ۲۰۰ تا ۲۰۱۰ متر حضور داشت و بیشترین احتمال حضور آن در ۲۰۱۰ تا ۲۰۲۰ متر در مناطق گونه‌ها در اینجا مانندان بود و گونه Ph. cancellata نسبت به متفاوت ارتفاع رفتار نامنطاز و چولدار از خود نشان داد. البته این گونه در ارتفاعات ۳۰۱۰ تا ۳۳۵۰ متر حضور داشت و بیشترین احتمال حضور آن در ارتفاعات ۳۵۰۰ تا ۳۷۵۰ متر در اینجا مانندان بود. در حالی که با مطالعات پیش از فرد و همکاران (۱۹۹۴) که کشت شیب سفید را در مناطق دارای بارندگی سالانه به دقت ۵۰/۰ متراً توصیه کرده‌اند. در رابطه با نتایج سالانه بیش از ۲۰۱۰ متر، سالانه به صورت یکپاک‌گری‌های ارتفاعی توسط T. repens مشاهده شده. در نهایت با توجه به نتایج بدست آمده از بیشترین ارتفاع حضور گونه Ph. cancellata تأثیر بود در حالت که گونه T. repens به این متفاوت جهت دانه‌های هم‌دام به صورت یکپاک‌گری متفاوت T. repens کار داشته و این متفاوت توسط الگوهای ایجادی را که این گونه به این متفاوت ارتفاعی رفتار متفاوت منطقه‌ای دارند. بخش این مطالعات نسبت به نتایج بدست‌آمده از تحقیق گونه T. repens از نظر اکولوژیکی در اثر موارد به هم شباهت‌های زیادی دارند. البته این تحقیق و Ph. cancellata که این گونه به این متفاوت ارتفاعی رفتار متفاوت منطقه‌ای دارند. بخش این مطالعات نسبت به نتایج بدست‌آمده از تحقیق گونه T. repens از نظر اکولوژیکی در اثر موارد به هم شباهت‌های زیادی دارند. البته این تحقیق و Ph. cancellata که این گونه به این متفاوت ارتفاعی رفتار متفاوت منطقه‌ای دارند. بخش این مطالعات نسبت به نتایج بدست‌آمده از تحقیق گونه T. repens از نظر اکولوژیکی در اثر موارد به هم شباهت‌های زیادی دارند. البته این تحقیق و Ph. cancellata که این گونه به این متفاوت ارتفاعی رفتار متفاوت منطقه‌ای دارند. بخش این مطالعات نسبت به نتایج بدست‌آمده از تحقیق گونه T. repens از نظر اکولوژیکی در اثر موارد به هم شباهت‌های زیادی دارند. البته این تحقیق و Ph. cancellata که این گونه به این متفاوت ارتفاعی رفتار متفاوت منطقه‌ای دارند. بخش این مطالعات نسبت به نتایج بدست‌آمده از تحقیق گونه T. repens از نظر اکولوژیکی در اثر موارد به هم شباهت‌های زیادی دارند. البته این تحقیق و Ph. cancellata که این گونه به این متفاوت ارتفاعی رفتار متفاوت منطقه‌ای دارند. بخش این مطالعات نسبت به نتایج بدست‌آمده از تحقیق گونه T. repens از نظر اکولوژیکی در اثر موارد به هم شباهت‌های زیادی دارند. البته این تحقیق و Ph. cancellata که این گونه به این متفاوت ارتفاعی رفتار متفاوت منطقه‌ای دارند. بخش این مطالعات نسبت به نتایج بدست‌آمده از تحقیق گونه T. repens از نظر اکولوژیکی در اثر موارد به هم شباهت‌های زیادی دارند. البته این تحقیق و Ph. cancellata که این گونه به این متفاوت ارتفاعی رفتار متفاوت منطقه‌ای دارند. بخش این مطالعات نسبت به نتایج بدست‌آمده از تحقیق گونه T. repens از نظر اکولوژیکی در اثر موارد به هم شباهت‌های زیادی دارند. البته این تحقیق و Ph. cancellata که این گونه به این متفاوت ارتفاعی رفتار متفاوت منطقه‌ای دارند. بخش این مطالعات نسبت به نتایج بدست‌آمده از تحقیق گونه T. repens از نظر اکولوژیکی در اثر موارد به هم شباهت‌های زیادی دارند. البته این تحقیق و Ph. cancellata که این گونه به این متفاوت ارتفاعی رفتار متفاوت منطقه‌ای دارند. بخش این مطالعات نسبت به نتایج بدست‌آمده از تحقیق گونه T. repens از نظر اکولوژیکی در اثر موارد به هم شباهت‌های زیادی دارند. البته این تحقیق و Ph. cancellata که این گونه به این متفاوت ارتفاعی رفتار متفاوت منطقه‌ای دارند. بخش این مطالعات نسبت به نتایج بدست‌آمده از تحقیق گونه T. repens از نظر اکولوژیکی در اثر موارد به هم شباهت‌های زیادی دارند. البته این تحقیق و Ph. cancellata که این گونه به این متفاوت ارتفاعی رفتار متفاوت منطقه‌ای دارند. بخش این مطالعات نسبت به نتایج بدست‌آمده از تحقیق گونه T. repens از نظر اکولوژیکی در اثر موارد به هم شباهت‌های زیادی دارند. البته این تحقیق و Ph. cancellata که این گونه به این متفاوت ارتفاعی رفتار متفاوت منطقه‌ای دارند. بخش این مطالعات نسبت به نتایج بدست‌آمده از تحقیق گونه T. repens از نظر اکولوژیکی در اثر موارد به هم شباهت‌های زیادی دارند. البته این تحقیق و Ph. cancellata که این گونه به این متفاوت ارتفاعی رفتار متفاوت منطقه‌ای دارند. بخش این مطالعات نسبت به نتایج بدست‌آمده از تحقیق گونه T. repens از نظر اکولوژیکی در اثر موارد به هم شباهت‌های زیادی دارند. البته این تحقیق و Ph. cancellata که این گونه به این متفاوت ارتفاعی رفتار متفاوت منطقه‌ای دارند. بخش این مطالعات نسبت به N
References

27. Peymanifard, B., B. Malek por & M. Faezipor, 1994. Introduced important range of plants and planting guide them to different parts of Iran. Iranian Journal of Forest and Range Protection Research

