تحلیل الگوی فضایی و پویایی لکه‌های گیاهی مرتع در فشارهای متفاوت چرایی (مطالعه موردی: مرتع گوسهری سپرمر)

عزم اله مرادی، غلامعلی حشمتی و امیر احمد دهقانی

تاریخ دریافت: 1395/7/30 - تاریخ تصویب: 1396/9/20

چکیده
الگوی استقرار گیاهان در مناطق خشک و نیمه‌خشک عمداً به صورت لکه‌های گیاهی است. در مرتع خشک و نیمه‌خشک، چرایی دام به‌عنوان یکی از مهم‌ترین عوامل ایجاد اختلالگر بر پویایی لکه‌های گیاهی تأیید زیادی دارد. پویایی لکه‌ها یکی از مفاهیمی است که در فشارهای محیطی و مدیریتی تغییرات قابل توجهی دارد. پژوهش‌های حاضر با مطالعه برآمدهای لکه‌های گیاهی در طول زمان و در سه شدت چرای دام، به تغییرات پویایی لکه‌های گیاهی در مرتع نیمه‌خشک سپرمر پرداخته است. بدین منظور، ابتدا شکل نمودنی‌های طراحی شده به نشانه معرفی هر یک از ناحیه‌های چرایی، از فشار جهات شرکت کرده و در راستای شرکت طول، عرض، ارتفاع لکه‌های گیاهی و طول فضای بین لکه‌های گیاهی در مدت 4 سال یادآوری شده. پویایی لکه‌های گیاهی با قاعدیدی، ریاضی رمانتیک و در طول گردابان چرایی (از ناحیه بدون فشار چرا به ناحیه با فشار چرایی زیاد) با تحلیل شبکه عصبی مصنوعی در نرم‌افزار Matlab گره‌های گیاهی که در این ناحیه متفاوت چرایی تفاوت معنی‌دار وجود دارد (p<0.05) پویایی لکه‌ها در طول گردابان چرایی حاکی از کاهش تغییرات خصوصیات اندوزه‌گیری لکه‌های گیاهی از این منظره برای بویش چرایی کمتر بوده است. تغییرات وضعیت و گرایش لوپس از دوره 10 ساله فرق نیز می‌توان کاهش پویایی لکه‌های گیاهی است. از این رو به نظر می‌رسد بررسی پویایی گیاهان در طول گردابانهای محیطی و حتی مدیریتی معرف خوبی در ارزیابی وضعیت اکوسیستم‌های مرتعی مناطق خشک و نیمه‌خشک باشد.

واژه‌های کلیدی: گردابان، پویایی لکه‌های گیاهی، شبکه عصبی مصنوعی، چرای دام، مرتع سپرمر.

1- دکتری علوم مرتع، گروه اکوژیوئولوژی، رئیس اداره منابع طبیعی شهرستان سپرمر، استان اصفهان
* نوبت بندی مسئول: moradeizat4@gmail.com
2- استاد گروه مرتع‌داری دانشگاه علوم کشاورزی و منابع طبیعی گرگان.
3- دانشیار گروه مهندسی آب دانشکده مهندسی آب و برق دانشگاه علوم کشاورزی و منابع طبیعی گرگان.
مقدمه
عمدها در اکوسیستم‌های مرتعی مناطق خشک و نیمه‌خشک، گونه‌های گیاهی به نحوی توسعه می‌یابند که ضمن استقرار خود به‌عنوان رویکردی از گیاهان همچون در برای فشارهای محیطی اطراف فراهم کند (۶ و ۲۲). به این ترتیب گیاهی‌پراکنش گیاهی در اکوسیستم‌های مرتعی مناطق خشک به‌صورت لکه‌های گیاهی ظاهر می‌شود که به شکل جزایر توسط خاک، لخت محیط محور شده‌اند (۲۳). لکه‌های گیاهی در ایجاد اشكال مشخص با پیوستنی مکانیکی که‌ستند (۲۴).

لکه‌های گیاهی در یک اکوسیستم پویا هستند. در اکوسیستم‌های مرتعی، یک لکه گیاهی در یکی از سه حالت زیر اتفاق می‌دهد: پنالتیسم (به‌رهنی)، فعال و تخریب شده. لکه‌هایی که در وضعیت پنالتیسم هستند در حین استقرار دیگری از اندازه گیری گونه‌های موجود در لکه‌ها، فعلی تخریب شده به لکه‌ها و حال تغییر جالبی دارد. لکه‌ها از حالت فعلی به حالت تخریب شده به حالت پنالتیسم تغییر جالبی دارد (۲۴). جرای دفع خشک، آتش‌سوزی زراعت و احیای جنگل‌ها همگی در حین استقرار و تغییر که‌ستن سه‌پانه‌ها و می‌توانند به طور مولکولی شکل یابد و با افزایش در این راه تغییر نهایی به تغییر دیگری فشارهای محیطی تاثیر خود را به تغییر اندارند، شکل و فراوانی لکه‌های گیاهی نامیاب می‌شود. پنالتیسم به‌ویژه "پنالتیسم" به‌شمار می‌رود. البته تغییرات در ساختار، اندازه و یا عملکرد لکه‌ها ممکن است (۴۳). در اکولوژی، تغییرات ساختار لکه‌ها شاخص تغییرات و محتوای طول و عرض لکه‌ها در اثر عملکرد مرتعی (مانند آتش‌سوزی و چرخ) و یا عملکرد اکوسیستم‌های مرتعی شاخص تغییرات و محتوای طول و عرض لکه‌ها در اثر عملکرد مرتعی (مانند آتش‌سوزی و چرخ) و یا عملکرد اکوسیستم‌های مرتعی نیستند (۴۴).

۷ colonization
۸ patch dynamic
نریشی الیکی پژوهش میرا، صالح داودیمی/شماره دوم/تایسپان 1397

لکه‌های کوچک مقبّلس، همان فاکتورهای هستند که منجر به تغییرات بزرگ مقاومت (از قبل ببینید) می‌شوند. بررسی تعداد اکولوژیکی موجود در مراکز، ضمن امکان مدیریت عملیاتی، بر نحوه تصمیم‌گیری برای آینده نیز موثر خواهد بود. بررسی‌های عمل آمده اندک می‌دهد که عمل جارد مهیاری عامل مهم‌ترین عامل اینشاتی و فشار معمول در مراکز است (93). به‌طور خاص با تحلیل اگزیستنی و بینایی لکه‌های گیاهی مراکز در سه فشار جایی بدون موش فشار جراحی (با فشار عضوی 13 کیلو‌پیوست) اگزیستنی 22040 هکتار و پشت فقا قرار خانی 1203 هکتار را شامل گردیده و در 30 کیلومتر غرب شهرستان سامرا استان اصفهان در طول جغرافیایی 233898 شرقی و عرض جغرافیایی 47807300 شمال بسب سیستم جهانی مراکور (منطقه) ماه‌ی اول است (1). اقلیمی درجه به اساس روش دومارند نیمه‌خست است (2). متوسط ارتفاع از سطح دریا، میانگین 10 ساله و متوسط درجه حرارت سالانه به ترتیب 2752/15 میلی‌تر و 6/1 درجه سانتی‌گراد است. منطقه گردشی‌های بوده و از نظر خاک کم عمق و غیر کیستکی است (23). بر اساس روش Daphne و Astragalus ascendens، فیزیولوژی دو گونه Gohnea غالب منطقه نیست و تبدیلی Gohnea غالب منطقه هستند و تبدیلی منطقه‌ها را به خود اختصاص می‌دهند. این گونه با ننو یا به نقش آنها در حفاظت از حد و عمل بهبود گونه‌های پرستار از گیاه‌های اکولوژیکی بالایی برخوردارند (31).

بررسی‌های 17 و 24، خواص محقلان بیان گردند با توجه به تأثیر منفی افزایش لکه‌های گیاهی که می‌تواند اکوسیستم را به سمت بهبود شدن سرو دهد، اهمیت دارد تا بتوان از آن به عنوان هدف دهندگی از تغییرات اکوسیستم ناحیه خشک دست یابند و به‌عنوان شاخصی از اتفاقات گیاهی استفاده گردد (۴).

تغییرات دینامیکی گیاهان از طرف مطالعه تغییرات طول لکه‌های گیاهی و فضاهای بین لکه‌های می‌تواند به خوبی نمایندگی تغییرات دینامیکی و بین‌گاهان در پایه به فشارهای محیطی و پوشان نیازی به ایجاد استعفای مطالعه توزیع فراوانی و ابعاد لکه‌های گیاهی، شاخص از فشار محیطی است که می‌تواند به‌عنوان لامین هدف‌گذاری برای ارزیابی وضعیت مراتع خشک و نیمه‌خشک بیابیانی مورد استفاده قرار گیرد (38). بطوریکه با مطالعه بر روی سیستم‌های جهانی از طرف گربه‌افراکن به یکی نتیجه‌گیری شد که در طول یک گردان دچرا به توجه به شدت دچرا (زیاد.

اندازه‌گیری کیفیت گیاهی گینه می‌تواند (41). مطالعه تأثیر فرق بر افزایش نیم‌گیاهی لکه‌های گیاهی، نشن داد که جزئی دام باعث تغییر توزیع مکانی بیابیانی این مراتع می‌شود (39) محققین با مطالعه بر روی هوای جراحی این مطالعه به دقت که این اتفاک آن‌ها بر اثر فشار جراحی اتفاق انگیزه به این نتیجه‌گیری رسیده‌اند که ساز و ارتفاع لکه‌ها در نزدیکی آتش‌خور (کمتر از 5 متر) به سبب کمتر از ناحیه دور (50 متر) است. لکه‌های گیاهی به‌کمک مشابه Gohnea و Aeluropus lagopoides Halostachys caspica

در اکثر سیستم‌های طبیعی، جدا به‌عنوان یک عامل از اکثر گونه‌های گیاهی مطرح بوده (6). در عین حال، اعمال مدیریت صحت و اتخاذ روش‌های مناسب احیای مراعات به منظور افزایش طبقه تولید و احیای مرتع مستلزم است. از طرف دیگر، همان گونه که بیان گردید، بین لکه‌های گیاهی و فضاهای بین لکه‌های تغییرات اکولوژیکی نیازی به رابطه تحت تاثیر عوامل محیطی مختلف قرار می‌گیرد و از انجایی که فاکتورهای تغییر دهنده

1-Disturbance
روش نمونهبرداری
قبل از انجام نمونهبرداری برای اندازه‌گیری مصرف‌های مربوط به لکه‌های گیاهی نواحی با طریقه علف‌های متغیره، متقابل می‌توانند گویای فشار چربی هستند. نمایی از مراحل سیستم در شکل 2 قابل مشاهده است. ناحیه‌بندی دو چشمه با فاصله 15 ساله موجود در منطقه ونک است. این ناحیه با توجه به حذف اثر چربی دام به عنوان ناحیه بدون فشار چربی انتخاب گردید. منطقه اول: ناحیه‌بندی فقر (در منطقه مورد مطالعه، 400 هکتار) مرتع از سال 1380 فقر است که جهت مقایسه به

1 Animal Unit per Month (AUM).
برای تغییر وضعیت مرتع از روی شش فاکتور

استفاده شد. در تعبیه گراپش که جهت حرکت مرتع را به سمت قهوه و ارتباط نشان دهد، از جمع استیزات طبقه‌بندی وضعیت و مقایسه آن با سال قبل در سال‌های مختلف استفاده شد.

عمل نمونه‌گیری و تعبیه وضعیت به

مدت 10 سال متوالی (از سال 1384 تا سال 1394) در

منطقه مذکور، تکرار شد (29). وضعیت و گراپش مرتع با توجه به پایه پاژش مرتع و تعبیه طرفه‌دانی که توسط محقق انجام شده است، محاسبه شد. تیپ گیاهی در هر سه ناحیه تراز،

بر اساس Aristagalus adscendens- Daphne macronata,

Bromus tomentellus

Aegopordon berardioides

Stipa barbata

Poa bulbosa L.

جوشخرکان گونه‌های

بر اساس Econ. اطلاعات مذکور از استفاده از رنگ‌فاز

Excel در محیط آنالیز

SPSS

شانخت کمی و دقت شرایط موجود در یک مقطع زمانی، تصویر رونده و دگرگونه‌های است که طی سال‌ها

در جامعه مورد نظر ایجاد شود. به تلفیق نتایج و داده با

1. Riman
نتایج
همان گونه که آمار توصیفی مربوط به پارامترهای اندازه‌گیری شده اکه‌های گیاهی (جدول 1) بین مقدار ناحیه ۲ با میانگین ۱/۳/۳۹ و ارتقاء متغیرهای میزان طول اکه گیاهی را دارد. در ناحیه ۱ عرض کلیه در این ناحیه نزدیک میانگین ۴۲/۱۲ و ارتقاء میانگین ۴۲/۱۲ است که نسبت به سایر ناحیه‌ها، دارای بیشترین مقدار است. نسبت میانگین طول اکه گیاهی به میانگین طول لکه عاري از پوشش در ناحیه ۳ با مقدار ۱/۳۴ مقدار بیشتری از سایر مناطق دارد. در حالیکه میانگین ارتفاع لکه گیاهی و طول لکه خاک در فضای عاري از پوشش در ناحیه ۱ بستری با مقدار ۹/۷۲ و ۲/۸۷ بیشترین مقدار را نسبت به سایر ناحیه‌ها و طول لکه خاک دارد.

جدول ۱ آمار توصیفی داده‌های مربوط به پارامترهای لکه‌های گیاهی

<table>
<thead>
<tr>
<th>ناحیه (۱)</th>
<th>ناحیه (۲)</th>
</tr>
</thead>
<tbody>
<tr>
<td>طول اکه‌های گیاهی</td>
<td>۰/۸۲</td>
</tr>
<tr>
<td>طول لکه خاک</td>
<td>۰/۸۲</td>
</tr>
<tr>
<td>میانگین طول لکه که گیاه</td>
<td>۰/۸۲</td>
</tr>
<tr>
<td>میانگین طول لکه که گیاه</td>
<td>۰/۸۲</td>
</tr>
<tr>
<td>میانگین طول لکه که گیاه</td>
<td>۰/۸۲</td>
</tr>
</tbody>
</table>

پس از تهیه مدل به‌کمک نرم‌افزار Matlab (7.10) ترسیم، تفسیر و آرایه کردن، برای تحلیل نتایج در یک محیط پویا نیاز به طراحی سلسله مراتب مکانی از نظر الگوی پیچیده و ذهنی از نظر زمان (از یک تا چند سال) دارد. برای این منظور، داده‌ها در ابعاد زمانی و مکانی از کوچک به بزرگ با مگل‌لغی و برای هر یک از سلسله مراتب مربوط به ناحیه‌ها (شکل ۴).
از سپر نواحی است. حداکثر ارتفاع لکه گیاهی و نسبت طول لکه به طول خاک لخت، در ناحیه ۳ بیشتر از سپر نواحی است.

شکل ۵- حداکثر، میانگین و حداکثر پارامترهای لکه‌های گیاهی را در ناحیه‌های مختلف از لحاظ ظرفیت چربی نشان می‌دهد. به طوریکه در این شکل مشاهده می‌شود، حداکثر و همچنین میانگین فاصله بین لکه‌های گیاهی در ناحیه ۱ بیشتر

پ- عرض لکه‌های گیاهی (محور عمودی، سانتیمتر)

الف- فاصله بین لکه‌های گیاهی (محور عمودی، سانتیمتر)

د- ارتفاع لکه‌های گیاهی (محور عمودی، سانتیمتر)

ج- طول لکه‌های گیاهی (محور عمودی، سانتیمتر)

ه- نسبت طول لکه به طول خاک لخت (محور عمودی، سانتیمتر)

کلاس‌های خوش‌خوراکی گونه‌های گیاهی در ترکیب لکه‌های گیاهی در جدول ۲ آورده شد.
جدول 2- تغییرات سه روش احتمالی گونه‌های گیاهی در ترکیب گونه‌ای در طرفه‌های حاصله‌ای منفی

<table>
<thead>
<tr>
<th>گونه‌های کاربردمند</th>
<th>درصد در ترکیب گونه‌ای</th>
<th>کلاس خوش‌خواهی</th>
<th>واحد دامی در ماه</th>
<th>واحد دامی در ماه</th>
<th>واحد دامی در ماه</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthophyllum bracteatum</td>
<td>III</td>
<td>8/6</td>
<td>2/5</td>
<td>4/2</td>
<td></td>
</tr>
<tr>
<td>Agropyron elongatum</td>
<td>I</td>
<td>2/3</td>
<td>6/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agropyron tricophorum</td>
<td>I</td>
<td>2/4</td>
<td>3/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artemisia aucheri</td>
<td>III</td>
<td>7/8</td>
<td>2/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astragalus adscendense</td>
<td>III</td>
<td>6/5</td>
<td>3/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astragalus gossypianus</td>
<td>II</td>
<td>6/5</td>
<td>3/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boissiera squarrosa</td>
<td>I</td>
<td>6/5</td>
<td>3/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromus tomentellus</td>
<td>II</td>
<td>8/4</td>
<td>3/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Echinops faricus</td>
<td>III</td>
<td>5/7</td>
<td>3/6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eryngium bilardieri</td>
<td>II</td>
<td>5/6</td>
<td>3/6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Festuca ovina</td>
<td>III</td>
<td>6/8</td>
<td>3/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hordeum bulbosum L.</td>
<td>II</td>
<td>5/7</td>
<td>3/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medicago sativa</td>
<td>III</td>
<td>6/8</td>
<td>3/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noaea minuta</td>
<td>III</td>
<td>5/7</td>
<td>3/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poa bulbosa</td>
<td>II</td>
<td>6/8</td>
<td>3/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prangus ferulaceae</td>
<td>III</td>
<td>5/7</td>
<td>3/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stachys infinite</td>
<td>II</td>
<td>7/8</td>
<td>3/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stipa barbata</td>
<td>I</td>
<td>6/8</td>
<td>3/2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

نتایج حاصل از آنالیز شبکه عصبی برای تخمین ترتیب طول‌کل، عرض نکه ارتفاع نکه گیاهی و خوش‌خواهی نکه‌های گیاهی افزایش می‌یابد. میزان نسبت طول نکه به طول‌کل نکه به طول‌کل بکه ناحیه‌ی که به ناحیه‌ی دیگری بکه ناحیه‌ی دیگر است (شکل 3) در این شکل، تمامی پرامترهای ایجادگریگی اصلی در پی واقعیت برداشت 8 واحد دامی در ماه در هکتار به ناحیه-ی سه (با ظرفیت غلظه‌ای 8 واحد دامی در ماه در هکتار)، فاصله‌ی نکه‌های گیاهی کاشت می‌یابد به همین ترتیب طول‌کل، عرض نکه، ارتفاع نکه‌های گیاهی و خوش‌خواهی نکه‌های گیاهی افزایش می‌یابد. میزان نسبت طول نکه به طول‌کل نکه به طول‌کل بکه ناحیه‌ی که به ناحیه‌ی دیگری بکه ناحیه‌ی دیگر است (شکل 4) در این شکل، تمامی پرامترهای ایجادگریگی اصلی در پی واقعیت برداشت 8 واحد دامی در ماه در هکتار به ناحیه-ی سه (با ظرفیت غلظه‌ای 8 واحد دامی در ماه در هکتار)،
şaکتی، حالات بیماری، آزمایش‌ها و افتتاح‌های مختلفی دچار اتفاق می‌گردند که به ناحیه خیابانی و روستایی در شهرها و روستاهای مختلف محیط زیستی و تأمین نیازهای مصرفی و تولیدی را تأمین می‌کنند. تأثیرات مختلفی از بین برده شده و برای بهبود زندگی در این مناطق، برنامه‌ریزی و آموزش گروه‌های مختلفی انجام می‌گیرند. 

نتایج بررسی بیماری لکه‌های گیاهی با توجه به روابط داخلی برای ایمنی‌های اندازه‌گیری شده توسط تحلیل شیکتایی نشان می‌دهد که پیشگیری لکه‌های گیاهی از سمت راست به سمت چپ افزایش می‌یابد. به طوریکه در ناحیه چرایی سه با فشار

- نسبت طول لکه به طول خاک
- نسبت طول‌ها در نقاط مختلف پارامترهای لکه‌های گیاهی در مناطق با نظریت مختلف چراپی (ناحیه‌های چراپی)

- نسبت طول‌ها در نقاط مختلف پارامترهای لکه‌های گیاهی در مناطق با نظریت مختلف چراپی (ناحیه‌های چراپی)
تحلیل اگوی فضایی و پویایی لکه‌های گیاهی مربوط در فشارهای مختلف جغرافیایی

می‌افتد. عدد ۶ نشان‌دهنده این است که لکه‌های گیاهی پویایی زیادی دارد و این حالت در منطقه قرق (بدون فشار جر) اتفاق افتاد.

شکل ۷- پویایی لکه‌های گیاهی در ناحیه‌های جغرافیایی (در شکل بالا، شش ضلعی‌های روبرو نشان‌دهنده مجموعه‌ای از لکه گیاهی و اعداد داخل آن‌ها نشان‌دهنده رنگ پویایی لکه‌ها است)

ثبت گردید. نتیجه حاصل از این بررسی در جدول ۳ خلاصه شده است. همانطور که در جدول مشاهده گردید، وضعیت مربع در مناطق مختلف ضعیف است.

جدول ۳- تعبیر وضعیت و گرایش‌های مختلف به لحاظ فشاری، واحد دامی در هکتار نیز در طول ۱۰ سال (۱۹۴۹-۱۹۴۴) برآورد

مرتعداری سهیم (Ｘ)
بحث و نتیجه‌گیری
نتایج حفاظت حاضر نشان داد شدت‌های گرایی در پویایی لکه‌های گیاهی و ارزش‌های مستمر اسکله بسیار با هم تغییر و چنین چالشی ایجاد نمی‌شود. با توجه به نتایج حفاظت حاضر نشان داده شده که نشان داده شده، جهت تحلیل شبکه نشان داده توانایی تغییرات پویایی لکه‌ها، لازم است توجه شود. برای آنکه اشتباهات درست باشد، می‌بایست از توان آزمایش‌های اکوسیستم‌ها در این مرحله حذف شود. همچنین اگر در این مرحله اکوسیستم‌ها در توان تجربی گاهی ایجاد نمی‌شود، منجر به تغییر در اکوسیستم‌ها می‌گردد. در این مرحله اکوسیستم‌ها در نمی‌توانند توان تجربی گاهی ایجاد نمی‌شود و نشان می‌دهد که این‌ها در این مرحله اکوسیستم‌ها در نمی‌توانند توان تجربی گاهی ایجاد نمی‌شود. در این بررسی، نشان داده شده که گاهی ایجاد نمی‌شود و نشان می‌دهد که این‌ها در این مرحله اکوسیستم‌ها در نمی‌توانند توان تجربی گاهی ایجاد نمی‌شود و نشان می‌دهد که این‌ها در این مرحله اکوسیستم‌ها در نمی‌توانند توان تجربی گاهی ایجاد نمی‌شود.
تحلیل الگوی فضایی و پویایی لکه‌های گیاهی متعلق به فارزارهای مختلف چربی —

است این نتایج نیز همانند نتایج قبلی موجب تأثیر چراپ دام بر تغییر پویایی گیاهی است.

همان‌طور که نتایج شبه عصبی در پویایی لکه‌های گیاهی نشان داده، پویایی لکه‌های گیاهی عمدتاً گراس‌های Agropyron elongatum، Bromus tomentellus، Poa bulbosa، از قبل و طول Agropyron tricophorum، ناحیه 1 ناحیه 2 افزایش می‌یابد (جدول 6)، این پویایی به‌ویژه در ازمان تولید لکه تغییر و قابلیت دان بر وجود وضعیت تغییر است. دیگر اینکه به نظر می‌رسد نتایج سال هایی در نظر گرفته شده (10 سال) برای بسیار وضعیت مرنگ با توجه به شرایط هفتگی موجود در اザー سپرم و نیاز به زمان زاید برای تغییر وضعیت مرنگ باشند. خوبی نشان دهنده قرار دارند بر تغییر وضعیت مرنگ باشد.

بیانی این مسند خود که مطالعه تغییرات پویایی گیاهی متعددند کننده تاثیر واقعی مدیریت عامل شده بر تغییر وضعیت بوده و علاوه بر هزینه کمتر در مدیت زمان سپرده شده است. 

نتایج دیگری که ذکر آن در این مبحث در مورد طول می‌رسد این است که به نظر می‌رسد این که یکی از اهداف مدیریت تغییرات طول لکه گیاهی و فضای بین لکه‌های ضمین توجه به تغییرات طول لکه گیاهی. در این رو به طول آوردن لکه‌های گیاهی می‌تواند به عنوان یکی از اهداف مدیریت گیاهی در طول گزارش‌های محیطی و حتی مدیریت عفونی خوبی در ارزیابی وضعیت اکوسیستم‌های مرتع بخصوص در حاشیه وضعیت فضایی لکه‌های گیاهی. از این رو به طوریکه با عنوان یکی از اهداف مدیریت قوی از طرف کاهش یا افزایش فشار بر مرنگ، میان نگه داشته باشد در مورد لکه گیاهی که به پوشیدن گیاهی در تغییرات طول لکه گیاهی گزارش‌های می‌تواند به عنوان یکی از اهداف مدیریت گیاهی به سمت بیشتری یا درخت پوشیدن یا بیشگاهی و گنگ‌های سوق داده می‌باشد در این رو تغییرات طول لکه گیاهی و تغییرات لکه‌های گیاهی و تغییرات طول لکه در تغییرات طول لکه‌های گیاهی و میزان فشار وارده بر مرنگ را درک و تجزیه و تحلیل نمود. به‌طور کلی در مرنگ با وضعیت خوب، مدیریت چراپ توصیه می‌شود و چراپ متغیر با اساس طوفان چراپ دام است که بر یافته ضریب برشته 50 درصدی یافته می‌شود و چراپ شدید، بیش از ضریب برشته می‌باشد است. 

لکه‌های گیاهی عکاسی داشته شده (96). لکه‌های گیاهی عکاسی داشته شده (96). لکه‌های گیاهی عکاسی داشته شده (96). لکه‌های گیاهی عکاسی داشته شده (96).
References


31. Moradi, E., 2007. Seasonal variation of Total Non-structural Carbohydrate (TNC) levels in "Bromus tomentellus" on moderately and heavy grazed sites in Semirom. Isfahan University of tech. 31p. (In Persian)