مقایسه دقت روش‌های مختلف نمونه‌برداری درصد پوشش گیاهی در مطالعات سنجش از دور (مطالعه موردی:
مراجع عباس آباد همدان)

ظاهره سلیمان بیاتی: سید زین العابدین حسینی، آناهیتا رستیان و حسین علیزادی

تاریخ دریافت: 1394/11/11 تاریخ تصویب: 1396/05/15

چکیده

تشریح ماهورهای باعث افزایش دقت و کاهش زمان تهیه نشانه درصد پوشش گیاهی می‌شود. این مطالعه با هدف مقایسه سه روش نمونه‌برداری زمینی درصد پوشش گیاهی جهت استفاده از داده‌های مرتبط از مطالعات سنجش از دور انجام شده است. منطقه مطالعاتی مرجع حوزه عباس آباد (تاریک‌پذید) در استان همدان است. برای این منظور تصویر سنجش OLI ماهوره ندست 8 مربوط به 31 مسال DVI با استفاده از برنامه NDVI و SQRT RVI و RVI و NDVI و SAVI و RVI و TNDVI 2015 پردازش گردید. شاخص‌های گیاهی NDVI و SAASI و مادون قرار گرفتند. در پنج تبخیر گیاهی محاسباتی. در مطالعه میدانی درصد پوشش گیاهی در منطقه با روش‌های استانکت، روش پلات گیاهی (پنجم پیکسلی) و روش قدامی - نقطه انتخابی گیری شد. سپس با استفاده از آنالیز همبستگی و رگرسیون میزان Hمبستگی زمینی با شاخص‌های گیاهی بررسی گردید. به دلیل بی‌تنها بودن همبستگی شاخص گیاهی NDVI با نمایی تبخیر ها در هر سه روش، مدل یا روش درصد پوشش گیاهی با استفاده از داده‌های زمینی این روش نمونه‌برداری به کمک این شاخص تعیین گردید. در مراحل بعد با اعمال این مدل بر روی شاخص NDVI نقشه درصد پوشش گیاهی برای سه روش بطور جداگانه نشانه داده شد. با استفاده از معرفی‌های مناسب کلی و ضریب کلی، نتایج بخشنده نشان داد که ضریب کلی نشانه نشانه نشان داد که ضریب کلی نشان داد که ضریب کلی

واژه‌های کلیدی: درصد پوشش گیاهی، روش نمونه‌برداری صحرایی، سنجش از دور، لندست 8

1- دانشجوی کارشناسی ارشد مرجع تداری، دانشکده منابع طبیعی و کشاورزی، دانشگاه یزد
2- استاد دانشکده منابع طبیعی و کشاورزی، دانشگاه یزد
zhosseini@yazd.ac.ir
3- استاد دانشکده منابع طبیعی و کشاورزی، دانشگاه یزد
4- کارشناس ارشد آبخیزداری، آداره کل منابع طبیعی و آبخیزداری استان همدان

Downloaded from rangelandsrm.ir at 12:17 +0430 on Saturday June 13th 2020
مقایسه دقت روش های مختلف نمونه برداری درصد پوشش گیاهی در مطالعات سنگین از دور

مقدمه

ایران سطحی بالغ بر 146 میلیون هکتار دارد که حدود 86 میلیون هکتار آن را مراتع تشکیل می‌دهد. مراتع یکی از منابع اصلی خودنشان است که بررسی می‌شود. در اثر این کاربرد، ناحیه شناخت و ارزیابی این اراضی با پایه به‌پایش‌های میدانی امکان‌پذیر نمی‌باشد. از طرف دیگر هم، پوشش گیاهی به عنوان اصلی و به‌طور معمول شاخص‌هایی برای دادن نشانه‌های سنگین از دور شناخت می‌شود. استفاده از کنکاش‌های سنگین از دور در شناسایی پوشش گیاهی، در سیستم‌های به‌پایش‌های میدانی کاربرد بسزایی دارد.

مواد و روش‌ها

الف- منطقه مورد مطالعه

منطقه مورد مطالعه بخشی از مرکز استان همدان واقع در جنوب غربی شهر همدان تحت عنوان عباس‌آباد (تاریک‌دره) می‌باشد. می‌توان یک چهارپوش واقع در سه روستای بیش از 250 هکتار داشته باشیم. ناحیه گیاهی در این منطقه مجموعه‌های دوران دوم، سوم و چهارم زمین‌شناسی قابل روبه‌روی است. قدرت‌های سنجشی متعلق به بخش‌هایی از توابل‌های پایین‌ریز، ناحیه‌ای از دوران‌های تاریک‌دره، و ناحیه‌ای از دوران‌های دوران دوم و سوم است. این منطقه در طول 22 سال حداکثر 419 میلی‌متر است و قسمت‌های اطراف باندگی‌ها در فصل زمستان را از دید.

(۲۹)
سنگین قرار گرفته است. گونه‌های غالب آن انواع شیره‌ها (Cynodon dactylon) و مرغ (Trifolium spp) گونه‌های همراه آن گندمیان، جنگله‌ها و انواع چوبک‌ها و آوشین است. این تیپ از نظر مرجعی در یک وضعیت خوب قرار گرفته است (22).

تیپ شماره دو

Astragalus spp + Bromus Tomentellus

با کد گیاهی 10 بر روی نقشه مختص گردیده و در ارتفاع 1900 تا 2400 متر واقع است. بر روی دامنه ارتفاعات با خاک‌های لیتوسول با بوشش سنگ و سگریز و بیرون زدنی‌های سنگی و همچنین در دامنه‌های تحتالی ارتفاعات مشترک به وسیله تاریک‌کرده با خاک‌های نسبتاً عمیق با یافته سبک‌ترهای شیوع و نبا که خاک‌های گونه‌های غالب است. این تیپ از نظر مرجعی در یک وضعیت خوب قرار گرفته است (22).

تیپ شماره سه

Astragalus siliquasus-Stipa hohenackerian

تیپ با کد گیاهی 10 بر روی نقشه پویش As.si+St.ho مختص شده است. در ارتفاع 1900 تا 2100 متر واقع شده است. بر روی اراضی تیمه‌های با خاک‌های عمیق یک تیپ عمیق با یافته سبک‌ترهای شیوع و نبا که خاک‌های گونه‌های غالب است. این تیپ از نظر مرجعی در یک وضعیت خوب قرار گرفته است (22).

تیپ شماره چهار

Astragalus siliquasus- Poa bulbosa

کد گیاهی 6 بر روی نقشه پویش با کد گیاهی As.si+Po.bu مختص گردیده است و در ارتفاع 2000 تا 2400 متر واقع شده است. بر روی اراضی کوه‌هایی با خاک‌های عمیق یک تیپ عمیق لیتوسول با یافته متوسط رسمی - شماره 1. پو گونه‌های گیاهی مورد مطالعه

پ- تیپ‌های گیاهی مورد مطالعه

تیپ‌های گیاهی مورد مطالعه براساس نمود ظاهری بوشش گیاهی با فیزیولوژی و با در نظر گرفته حاکم و گونه‌ات تیپ مورد مطالعه از نظر تاج بوشش تفکیک شد. (22) (شکل 1. مقدمه) تیپ‌های گیاهی مورد مطالعه به شرح زیر می‌باشد:

تیپ شماره یک (چمنزار)

Astragalus siliquasus+ Cynosodon dactylon+Triticum spp

کد گیاهی 16 بر روی نقشه پویش با کد گیاهی Cy. da + Tr.re گیاهی مورد مطالعه گردد. در ارتفاع 2100 تا 2300 متر واقع شده است. بر روی اراضی مسطح تا کم شیب با خاک‌های عمیق چمنی با یافته
استفاده از چهار تراسکت پنجه متری در محل نقطه
تصادفی (سایت نمونه برداری) و در چهار جهت عضوی بر هم
استفاده کرده و سپس طول ماماس زنگ یوکش (گیاه،
سنگ و سگرزی) خاک و لاتره برحسب را با یک خط
اندازه‌گیری کرده و سپس به علت کل خط
دانسته و طول ماماس هر گونه
(تراسکت) و طول ماماس هر گونه درصد
و درصد کل یوکش گیاهی تعیین گردید (شکل ۲).

در روش پایه گذاری (بنج پیکسلی) از نقطه شروع به
شروع حدود ۳۰ متر (براساس شبکه گروهی
از فاضل عضوی) و ادامه عضوی در محل
۵۰ متر در محدوده فرضی گردید. برای هر نقطه
نمونه‌گیری تعادل چهار پایه در چهار جهت
آزمایش (محض دارای فرضی و نکه وارد در
محدوده فرضی گردید. با توجه به اینکه در
شکل هر نقطه ۲۰۰ خوراکی
مختل در اراضی مسیع این کار انجام شده تعادل
بیادانش شد و طرح یوکش گیاهی تعیین زده شد (شکل
۲).

در روش قدم - نقطه ابتدا تعادل نقاط برحسب سطح
نمونه‌برداری و انداده پیکسل ماهواره تعیین گردید سپس
موقتی نقطه شروع ثبت می‌گردد و در چهار جهت به
صورت قدم به قدم (هر یک پایه بنج یک پایه)
نمونه‌برداری می‌شود. سپس بر روی کنش عضوی گذارشی و سپس هر
گونه برخورد این علامت را با نوع یوکش‌ها و حتی نقاط
بیودن یوکش (خاک، نشک و سنگ) ثبت می‌گردد
(شکل ۲).

سطح سنگ و سنگرزی هر متر با پیکسل طیه‌ی سنگی
Astragalus گرته است. گونه‌های غالب آن کون (Poa bulbosa)
و یوکش (Astragalus siliquasus)
متوسط قرار دارد و گونه‌های قیفی
Dactylic glomerata و علف باغی
گونه‌های intermediate
همراه هستند (۲۲).

تیپ شماره پنجه

Astragalus siliquasus- Festuca ovina
کد گیاهی
بر روی نقشه یوکش مشخص
شده است و در ارتفاع ۳۰۰ تا ۳۲۰۰ متر واقع شده است.
بر روی ارتفاع‌های خاکی‌های لیتوس با یوکش سنگ و
سنگرزی و رنگ‌های سُمن قرار گرفته است و گونه‌های
(Astragalus siliquasus)
غلابی آن گونه می‌باشد. در وضعیت مستقیم قرار دارد و
Festuca ovina
Scariola
Salsola kali
ونم در ارتفاع‌های خزدار و orientalis
گونه‌های کن.

ب- روش‌های نمونه برداری زمینی درصد یوکش گیاهی

این‌ها در تیپ گیاهی به اساس ابتدای پیکسل تصویر
ماهواره‌ای و رابطه زیر، حداقل سطح نمونه برداری محاسبه

A = \[P(1+2L)^{2}\]

که در این رابطه مقادیر P، A، L، L، A ابتدای پیکسل تصویر
ماهواره‌ای، میزان خطای تصحیح هندسی (برحسب پیکسل)
و حداقل سطح نمونه برداری است (۲۴).

OLI
از انجاماتی که در این تحقیقات از تصویر سنجشی
ماهواره‌ای لندست (ابعاد پیکسل ۳۰×۳۰ متر) با خطا
تصحیح هندسی ۵/۵ می‌باشد. این یافته‌ها
شد. حداقل سطح
مورد نیاز برای نمونه برداری ۲۶۰۰ متر مربع است. بنابراین
برای اطمینان بیشتر در این مطالعه از تیپ گیاهی
منطقه‌ای به مساحت ۸۵۸۰ متر مربع نمونه برداری
شده. برای بررسی ارتباط میان یوکش‌ها و شاخ‌های
گیاهی نمونه برداری صادفی- سیستم‌هایی از متر تا
پیکسل یوکشگری گیاهی به سه روش تراسکت خطی
پایه‌گذاری (بنج پیکسل) و روش قدم - نقطه
سایت مختص به جنگ زیر اندازه
سدای یوکش تراسکت خطی با توجه به یوکش‌ها و
شیب‌های میانه منطقه و اندازه پیکسل تصویر ماهواره‌ای مورد

\[\text{Astragalus siliquasus} \times \text{Festuca ovina}\]

\[\text{Scariola orientalis} \times \text{Salsola kali}\]

\[\text{Astragalus siliquasus} \times \text{Festuca ovina}\]

\[\text{Scariola orientalis} \times \text{Salsola kali}\]

\[\text{Astragalus siliquasus} \times \text{Festuca ovina}\]

\[\text{Scariola orientalis} \times \text{Salsola kali}\]
شکل ۲ - نمای شماتیک روش‌های مختلف نمونه‌برداری زمینی

<table>
<thead>
<tr>
<th>جدول ۱ - شاخص‌های گیاهی مورد استفاده</th>
<th>ویژگی</th>
<th>جدول ۱ - شاخص‌های گیاهی مورد استفاده</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetation Index</td>
<td>Reference</td>
<td>Equation</td>
</tr>
<tr>
<td>DVI</td>
<td>Tucker 1979</td>
<td>NIR-R-NIR+R</td>
</tr>
<tr>
<td>NDVI</td>
<td>Rouse et al.1974</td>
<td>NIR-R/NIR+R</td>
</tr>
<tr>
<td>RVI</td>
<td>Jordan 1969</td>
<td>NIR-R/NIR+R</td>
</tr>
<tr>
<td>TNDVI</td>
<td>Tucker 1979</td>
<td>((NIR-R)/(NIR+R+0.5))×0.5</td>
</tr>
<tr>
<td>SAVI</td>
<td>Huete 1988</td>
<td>((NIR-R)/(NIR+R+0.5))×1.5</td>
</tr>
<tr>
<td>SQRT RVI</td>
<td>Tucker 1979</td>
<td>NIR-R/G</td>
</tr>
</tbody>
</table>

بررسی همبستگی درصد پوشش و شاخص‌های گیاهی

برای بررسی میزان همبستگی شاخص‌های گیاهی با میزان تاج پوشش گیاهی، با توجه به طول ترانسکت نمونه‌برداری، نتیجه‌گیری به شماره ۱۰۰ متراً نقاط نمونه‌برداری تهیه و برای مطالعه هر یک از نیروی به ERDAS IMAGINE 9.1 گذاری می‌کرد. میزان همبستگی داده‌های جمع‌آوری شده از هر یک از نیروی گیاهی با شاخص‌ها در سه روش مختلف نمونه‌برداری بی‌طرفکی در نرم‌افزار SPSS نسبت به دیگر شاخص‌ها مورد بررسی (مدل رگرسیون) بر روی درصد پوشش گیاهی با استفاده از شاخص NDVI و داده‌های زمینی محاسبه گردید تا به کمک آن درصد پوشش گیاهی در کل منطقه براورد شود.
نتایج

مقایسه داده‌های سه روش نمونه‌برداری درصد پوشش گیاهی در مطالعات سنجش از دور ...

تهیه نقشه درصد پوشش به سه روش و ارزیابی صحت
نقشه‌های تولید شده

بعد از انتخاب شاخص با استفاده از نرم‌افزار ARCGIS در نرم‌افزار ۱۰.۱، نرم‌افزاری برای رشد پوشش گیاهی یاری روش مختلف نمونه‌برداری بر روی شاخص مختلف اعمال و نقشه درصد پوشش برای روی شاخص تولید شده. در حال آنالیز نقاط نقص‌های تولیدی، نقشه واقعی زمینی تهیه شده در بارداری صحیح استفاده و صحت کلی و ضریب کاپا برای نقشه‌ها محاسبه گردید.

جدول ۲ - میزان همبستگی بین همبستگی کل منطقه و شاخص‌های گیاهی درصد پوشش نمونه‌برداری

<table>
<thead>
<tr>
<th></th>
<th>تارکس</th>
<th>باین</th>
<th>مقدار نقشه</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQRT RNI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>تیپ چمنزار</td>
<td>۳۲**</td>
<td>۲/۰۶</td>
<td>۲/۰۲</td>
</tr>
<tr>
<td>AS-Br</td>
<td>۳۸**</td>
<td>۲/۰۶</td>
<td>۲/۰۴</td>
</tr>
<tr>
<td>AS-St</td>
<td>۳۸**</td>
<td>۲/۰۶</td>
<td>۲/۰۴</td>
</tr>
<tr>
<td>AS-Po</td>
<td>۳۹**</td>
<td>۲/۰۶</td>
<td>۲/۰۵</td>
</tr>
<tr>
<td>AS-Fe</td>
<td>۳۹**</td>
<td>۲/۰۶</td>
<td>۲/۰۵</td>
</tr>
<tr>
<td>کل منطقه</td>
<td>۳۹**</td>
<td>۲/۰۶</td>
<td>۲/۰۵</td>
</tr>
<tr>
<td>SAVI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>تیپ چمنزار</td>
<td>۳۲**</td>
<td>۲/۰۶</td>
<td>۲/۰۴</td>
</tr>
<tr>
<td>AS-Br</td>
<td>۳۸**</td>
<td>۲/۰۶</td>
<td>۲/۰۴</td>
</tr>
<tr>
<td>AS-St</td>
<td>۳۸**</td>
<td>۲/۰۶</td>
<td>۲/۰۴</td>
</tr>
<tr>
<td>AS-Po</td>
<td>۳۹**</td>
<td>۲/۰۶</td>
<td>۲/۰۵</td>
</tr>
<tr>
<td>AS-Fe</td>
<td>۳۹**</td>
<td>۲/۰۶</td>
<td>۲/۰۵</td>
</tr>
<tr>
<td>کل منطقه</td>
<td>۳۹**</td>
<td>۲/۰۶</td>
<td>۲/۰۵</td>
</tr>
<tr>
<td>NDVI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>تیپ چمنزار</td>
<td>۳۲**</td>
<td>۲/۰۶</td>
<td>۲/۰۴</td>
</tr>
<tr>
<td>AS-Br</td>
<td>۳۸**</td>
<td>۲/۰۶</td>
<td>۲/۰۴</td>
</tr>
<tr>
<td>AS-St</td>
<td>۳۸**</td>
<td>۲/۰۶</td>
<td>۲/۰۴</td>
</tr>
<tr>
<td>AS-Po</td>
<td>۳۹**</td>
<td>۲/۰۶</td>
<td>۲/۰۵</td>
</tr>
<tr>
<td>AS-Fe</td>
<td>۳۹**</td>
<td>۲/۰۶</td>
<td>۲/۰۵</td>
</tr>
<tr>
<td>کل منطقه</td>
<td>۳۹**</td>
<td>۲/۰۶</td>
<td>۲/۰۵</td>
</tr>
<tr>
<td>INSDVI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>تیپ چمنزار</td>
<td>۳۲**</td>
<td>۲/۰۶</td>
<td>۲/۰۴</td>
</tr>
<tr>
<td>AS-Br</td>
<td>۳۸**</td>
<td>۲/۰۶</td>
<td>۲/۰۴</td>
</tr>
<tr>
<td>AS-St</td>
<td>۳۸**</td>
<td>۲/۰۶</td>
<td>۲/۰۴</td>
</tr>
<tr>
<td>AS-Po</td>
<td>۳۹**</td>
<td>۲/۰۶</td>
<td>۲/۰۵</td>
</tr>
<tr>
<td>AS-Fe</td>
<td>۳۹**</td>
<td>۲/۰۶</td>
<td>۲/۰۵</td>
</tr>
<tr>
<td>کل منطقه</td>
<td>۳۹**</td>
<td>۲/۰۶</td>
<td>۲/۰۵</td>
</tr>
</tbody>
</table>
ارزیابی دقت نقشه‌های تولیدی بر اساس داده‌های سه‌روش مختلف نمونه‌برداری (جدول 3) بایانگر این است که نقشه تولید‌شده از روش ترانسکت با ضریب کاپایی برابر 0/85، و صحت کلی بر اساس گزارش داده‌های بالاترین دقت و صحت است بنابراین قسمت اعظم مرتع را مناطق با پوشش ضعیف تشکیل می‌دهد و باید برای حفاظت و جلوگیری از تبدیل این مناطق به مناطق بدون پوشش اقداماتی انجام داد.

در شکل 3 نقشه‌های تولید‌شده برای سه روش ارائه شده است. در نقشه درصد پوشش تپه‌شده بر اساس داده‌های زمینی روشن ترانسکت قسمت اعظم مرتع را مناطق با پوشش ضعیف تشکیل می‌دهد و مناطق بدون پوشش و مناطق با پوشش بالای مقادیر اندازه‌گیری به خود اختصاص می‌دهند. در حالیکه در نقشه‌های تولید شده بر اساس داده‌های زمینی روشن پلات و قدم - نقطه مناطق بدون پوشش نسبت به نقشه روشن ترانسکت اندازه‌گیری بیشتر است.

<table>
<thead>
<tr>
<th>ایندکس</th>
<th>دی‌وی‌ای</th>
<th>کل منطقه</th>
<th>دی‌وی‌ای</th>
<th>کل منطقه</th>
<th>دی‌وی‌ای</th>
<th>کل منطقه</th>
</tr>
</thead>
<tbody>
<tr>
<td>ثبات</td>
<td>0/85</td>
<td>0/9</td>
<td>0/85</td>
<td>0/9</td>
<td>0/85</td>
<td>0/9</td>
</tr>
<tr>
<td>ثبات</td>
<td>0/9</td>
<td>0/9</td>
<td>0/9</td>
<td>0/9</td>
<td>0/9</td>
<td>0/9</td>
</tr>
<tr>
<td>ثبات</td>
<td>0/9</td>
<td>0/9</td>
<td>0/9</td>
<td>0/9</td>
<td>0/9</td>
<td>0/9</td>
</tr>
<tr>
<td>ثبات</td>
<td>0/9</td>
<td>0/9</td>
<td>0/9</td>
<td>0/9</td>
<td>0/9</td>
<td>0/9</td>
</tr>
<tr>
<td>ثبات</td>
<td>0/9</td>
<td>0/9</td>
<td>0/9</td>
<td>0/9</td>
<td>0/9</td>
<td>0/9</td>
</tr>
</tbody>
</table>

جدول 3- ضریب کاپایی و صحت کلی نقشه‌های تولید‌شده

<table>
<thead>
<tr>
<th></th>
<th>ضریب کاپایی</th>
<th>صحت کلی</th>
<th>روشن</th>
<th>پلات</th>
</tr>
</thead>
<tbody>
<tr>
<td>جدول 3</td>
<td>0/85</td>
<td>92/71</td>
<td>1/85</td>
<td>0/15</td>
</tr>
<tr>
<td></td>
<td>0/71</td>
<td>80/21</td>
<td>0/71</td>
<td>0/17</td>
</tr>
<tr>
<td></td>
<td>0/75</td>
<td>83/33</td>
<td>0/75</td>
<td>0/19</td>
</tr>
</tbody>
</table>
از جمله گونه‌های مطالعه‌شده استفاده از NDVI با هدف محاسبه میزان نسبت خاک به بیاض و تعیین اثرات این میزان بر روی گیاه‌ها و محیط زیست است. با استفاده از فناوری NDVI می‌توان به‌صورت دقیق‌تر از نسبت ویژگی‌های مختلف گیاهان به‌هم در نظر گرفته و باعث بهبود در کنترل و استفاده به‌ینمترین از منابع طبیعی شود. به‌علاوه این که با استفاده از NDVI می‌توان با استفاده از این فناوری در پیش‌بینی و تحلیل حساسیت‌های مختلفی را که در میزان نسبت مختلفی از محیط زیست بوجود می‌آید، استفاده کنیم.
References