چکیده
تولید علوفه (ذی توجه) هواپیما قابل استفاده برای چرای دام. یکی از مهم‌ترین عوامل مؤثر بر ظرفیت جرست که متاثر از نوسانات آب و هوایی است. استفاده از داده‌های اقلیمی یک روش آسان و کم‌هزینه در پرواز تولید علوفه می‌باشد. در این تحقیق به منظور بررسی کارایی مدل‌های آماری در پرواز تولید درامد متغیر تاخیر و تاخیر ارتباط بین علوفهی غلاب و مورد تعلیف دام با متغیرهای اقلیمی (باران، دما، رطوبت، تبخیر و تعرق واقعی و...) در پیک تولید آماری ده ساله (از سال 92 تا 99)، مدل تعادل آب و اقلیمی به روش FAO 56 (با استفاده از نرم‌افزار Cropwat) و مدل آماری رگرسیون (ساده و چندگانه) در مراتع استنبو جوزه شیرویه مورد استفاده قرار گرفت. ارزیابی مدل پروازی نشان داد که دقیق ترين مدل در منطقه مدل پرواز تبخیر و تعرق واقعی با استفاده از نرم‌افزار 8 (بایان کننده) با توجه به محاسبه تبخیر و تعرق واقعی در دوره دسمال ترسالی و خشکسالی مدل پرواز تولید علوفه مرتع تعبین شد (91.279.5/02 و بر اساس تولید علوفه 3/99/92 کیلوگرم بر هکتار پرواز گردید. بنابراین می‌توان بیان داشت که تبخیر و تعرق واقعی به عنوان عامل مهم‌کننده اقلیمی یکی از فاکتورهای اساسی در بهبود کارایی مصرف آب است. این شاخه اقلیمی می‌تواند در مدل‌های مختلف پرواز برلندمید تولید علوفه با توجه به پروز خشکسالی و ترسالی به منظور تعیین ظرفیت جرای دام در مرتع و توسه‌های بیشینه جایگزین روش‌های معمول با پرواز یک سال تولید گردید.

واژه‌های کلیدی: تبخیر و تعرق واقعی، شاخه اقلیمی، روش FAO، تولید درامد.
مقدمه

نوش اول در طی سال‌های مختلف یکی از مشکلاتی است که اکوسیستم‌های مرتعی بوده و در مناطق مختلف خشکسالی و نیمه خشک آن به روی هر سالند. نمونه‌هایی از این اکوسیستم‌های مرتعی در تغییرات طبیعی یافت. پوشش گیاهی در سال‌های مختلف باعث شده است که از الزامات مدیریت صحیح رفع و داشتن اطلاعات دقیق به هنگام از تولید عملیاتی ضروری باشند. در اینجا اگری ارزیابی تولید و روش‌های مورد استفاده برای دقت و هزینه قابل توجهی نیاز دارد. بنابراین، نیاز راهاهای ارزان و آسانتر تری تولید کمک مؤثری در ارزیابی پوشش گیاهی مرتعی نماید. عوامل مختلف بر روی تولید عوامل کمک‌رسی در ارزیابی آب و هوایی است که در ارائه فنی و آموزش و ساست برای ارائه عملیاتی برای تولید مرتعی بیش از هر زمان قبل به استفاده از نرم‌افزارهای مربوط به تغییرات آب و هوایی است. مدل‌ها و روش‌های شیب‌سازی برای تولید مرتعی به همین منظور توسعه یافته و استفاده موفقی برای تبعیض برای تولید در جوامع مرتعی کاربرد واقعیت‌های نوجوان روز افزون برای تولید مرتعی در مدت عوامل در مرتعی و روش‌های طبیعی ذکر شده شده اولیه که در قالب مدل‌بندی آب‌مصرفی آن ملاحظه می‌شود. برای این پایه بسیاری از پژوهشگران تلاش کرده‌اند که تولید مرتعی را از داده‌های اقلیمی و ابعاد یک اولین سطح با توجه به یک‌هارتسی ویژگی‌های خاک بیشتری را (مرتبط به) بررسی کرده. از بررسی مدل‌بندی آب‌مصرفی (وایت و هنکس، 1981) برای تولید عوامل در پیشگیری یکی از نیاز‌های اقلیمی (پارکنگی، تبخیر و تعرق بنابراین واقعیت و رطوبت اولیه قاچ در مدل‌بندی بر اساس یکدره است. بهره‌گیری از آمار و داده‌های اقلیمی

مرتبط به اولین قاچ در مرتعی بندی بر پایه‌های گیاهی

4. Wight and Hanks
5. Snowa & Hyder
روش تحقیق
با اشاره به منابع یاد شده در این تحقیق، برای برآورد
تولید پرندگان مرئی از مدل اماری رگرسیون (ساده و
چندگانه) و مدل تعداد آب بهره‌گیری شد. جهت تهیه
نمونه‌های آماری، داده‌های آب و هوایی از نرم‌افزار
ایستگاه‌های سینتیکی علی‌آباد) و تولید علوفه واقعی
مرئی ب درد دسال در مناطق حوزه شیرکوه، جمع‌آوری
گردید. سپس تعیین شاخص های اقیمی (تیتر و تعریق
گاه مرطع، تیتر و تعریق پانتسیال و افزایش)
اداگردی رطوبت اول قفل روش، ثابت و ویژگی‌های خاک و
ویژگی‌های گیاه (مرطع) به روش میانگین، آزمایشگاهی,
کتابخانه‌ای و ترکیبی صورت گرفت و در پایان محاسبات و
تجزیه و تحلیل به روش زیر انجام گرفت.

رسیدن پرندگان سال قبل و پرندگان قفل رویش مهم‌ترین
فاکتور در برآورد تولید پرندگان در مراتع می‌باشد. با توجه
به اهمیت موضوع، در این بررسی نیز تلاش شده است تا
برآورد تولید پرندگان در منطقه استنبات را از طریق
رابطه رگرسیون بین تولید علوفه مورد تحقیف دام و عوامل
اقلیمی منگر‌های اقیمی (بارندگی، رطوبت و ...) و
هم برای پایه مدل تعادل آب و به کمک داده‌های آب و هوایی
و شاخص‌های مهم اقیمی، ذخیره رطوبت خاک در اول
فصل رویش، ویژگی‌های گیاه (مرطع) و ویژگی‌های فیزیکی
خاک، مورد بررسی قرار گرفت.

مواد و روش‌ها
موضع منطقه مورد بررسی
منطقه موردطالعه با مساحتی معادل ۲۳۶۴ هکتار و
حدوده جغرافیایی ۳۱°۲۸′ تا ۳۳°۳۲′ شمیالی و ۵۳°۵۲′
تا ۵۴°۳۴′ شرقی، با محدوده ارتفاعی ۲۰۰ تا ۲۷۰ متر
از سطح دریا و شیب متوسط ۵ درصد و در بعضی
قسمت‌ها به شدت تا ۱۵ درصد تحت عنوان زیرجوه شیرکوه
در جنوب غربی استان برزق قرار دارد (شکل ۱). اقلیم منطقه
طقط رویش دام‌مرن شکنی سرد (اقلیم خشک) است. متوسط
میزان پرندگان سالیانه ۱۸۴ تا ۲۰۰ میلی‌گرم و متوسط
دمای سالیانه آن بین ۱۰/۸ تا ۱۳/۶ درجه سانتی‌گراد
Artemisia sieberi
Astragalus myriacanthus
-A: B
B
Downloaded from rangelandsrm.ir at 10:30 +0430 on Friday August 16th 2019
جدول 1- اسامی گیاه‌های موجود در جوهر شیرکوه

<table>
<thead>
<tr>
<th>نام علمی</th>
<th>خانواده</th>
<th>کلاس غنی‌داری</th>
<th>فرم رومیتی</th>
<th>فرم سنتی</th>
<th>جنس ساله</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artemisia aucheri</td>
<td>Asteraceae</td>
<td>III</td>
<td>یونه</td>
<td>یونه</td>
<td>یونه</td>
</tr>
<tr>
<td>Artemisia seibleri</td>
<td>Asteraceae</td>
<td>I</td>
<td>یونه</td>
<td>یونه</td>
<td>یونه</td>
</tr>
<tr>
<td>Cirsium congestum</td>
<td>Asteraceae</td>
<td>III</td>
<td>یونه</td>
<td>یونه</td>
<td>یونه</td>
</tr>
<tr>
<td>Hertia angustifolia</td>
<td>Asteraceae</td>
<td>III</td>
<td>یونه</td>
<td>یونه</td>
<td>یونه</td>
</tr>
<tr>
<td>Lactuca serriola</td>
<td>Asteraceae</td>
<td>III</td>
<td>یونه</td>
<td>یونه</td>
<td>یونه</td>
</tr>
<tr>
<td>Noaea macronata</td>
<td>Chenopodiaceae</td>
<td>III</td>
<td>یونه</td>
<td>یونه</td>
<td>یونه</td>
</tr>
<tr>
<td>Colchicum sp</td>
<td>Colchicaceae</td>
<td>III</td>
<td>یونه</td>
<td>یونه</td>
<td>یونه</td>
</tr>
<tr>
<td>Convolvulus fruticosus</td>
<td>Convolvulaceae</td>
<td>III</td>
<td>یونه</td>
<td>یونه</td>
<td>یونه</td>
</tr>
<tr>
<td>Euphorbia commata</td>
<td>Euphorbiaceae</td>
<td>III</td>
<td>یونه</td>
<td>یونه</td>
<td>یونه</td>
</tr>
<tr>
<td>Astragalus incrredensis</td>
<td>Fabraceae</td>
<td>III</td>
<td>یونه</td>
<td>یونه</td>
<td>یونه</td>
</tr>
<tr>
<td>Astragalus myriacanthos</td>
<td>Fabraceae</td>
<td>III</td>
<td>یونه</td>
<td>یونه</td>
<td>یونه</td>
</tr>
<tr>
<td>Stachys inflata</td>
<td>Lamiaceae</td>
<td>II</td>
<td>یونه</td>
<td>یونه</td>
<td>یونه</td>
</tr>
<tr>
<td>Dendrostella. lesteri</td>
<td>Lamiaceae</td>
<td>III</td>
<td>یونه</td>
<td>یونه</td>
<td>یونه</td>
</tr>
<tr>
<td>Boissierasquarrosa</td>
<td>Poaceae</td>
<td>III</td>
<td>یونه</td>
<td>یونه</td>
<td>یونه</td>
</tr>
</tbody>
</table>

اندازه‌گیری تولید بوشن گیاهی
برای اندازه‌گیری تولید بوشن تا یک تایی (دوره د سال)، بر حسب گونه، از شست پلاط 2 متر مربع در طول چهار نوار چهارمتری به طور متوسط با فاصله 100 متراً از یکدیگر که در طول هر 15 پلاط 2 متراً مربعی که فاصله پلاط در نیم‌نورد 10 متراً و فواصل پلاط‌های دیگر 28 متراً، از یکدیگر برهنه‌گیری شده (2). داده‌ها در قالب فرم نمونه‌برداری با ذکر محل نمونه‌برداری، شماره ترانسکت، شماره پلاط، تاریخ برداشت، نام گونه‌ها و برداشت داده‌ها از جمله حرفی نوروز، تاریخ برداشت، تلاش برای کاهش درصد سنگ و موکب‌زره و درصد خاک لخت از برنامه‌برداری شده است.

درصد سنگ و موکب‌زره
برای اندازه‌گیری درصد سنگ و موکب‌زره، در طول هر پلاط 150 نقطه تولید صورت گرفته است که در حدی به طور متوسط در هر نقطه، بیش از 100 نقطه وجود دارد و در اینجا استفاده شده است.

تهیه شد
www.weather.ir

برآورد تولید علوفه از طریق رگرسیون
برای اولین بار، معادله‌های قابل مصرف (بارندگی) به رطوبت نسبی، دما و ساینداتیکا (در تولید علوفه از روش همستخگی و رگرسیون (ماده و حساسیت) استفاده شد. برای این‌که این ابزار رگرسیون می‌تواند، مدل‌های ساده و سیستم‌های خودتراکمی یکی یا چندگانه، می‌تواند مدل‌های مناسب با تولید علوفه از طریق رگرسیون ساده و چندگانه محسوب گردد.

برآورد تولید از طریق مدل تعادل آب
برای این هدف، مدل‌های ERHYM-II و ERHYM-MII (31) مورد بررسی قرار گرفت. این آنالیز اکتشافی از طریق کنترل مجدد مدل تعادل آب در اقلیم است که در مورد آب و تغییرات در نقاطهای معین، جایگزین تا جای گذار برای بررسی قرار گرفت.
TAW=1000(θ_{FC} - θ_{WP}) Z_r

که در آن: TAW: توده تولید بر اثر در این مدل تولید علوفه سالانه (Ta/Tp) در بالاترین نقطه از نقاط اقلیمی (Ta) معادله Ya/Yp = Ta/Tp

درستی این معادله برای زایم 11 نمونه کشاورزی است.

یکی از گروه‌های به عنوان رایج ترین مدل برادر تولید از سوی

پژوهشگران (FAO 1960) از جمله و مورد کاربرد قرار

گرفته است.

بررسی و مطالعه خاک

بر اساس تغییرات مرحله‌ای در طول هر ترارسانک یک

بروی، خاک به معنی جدید نفوذ رشد (جمعه 4 برود) یک

حرف شد و نسبت به تثبیت تیم‌های و انتظار رطوبت

در این موقعیت از رشد فیزیولوژیکی باید بیش از 60 ساله سفری نمونه کن

و به کمک مثلث بیان تعبین گردید. برای تعبین زون مختصات ظاهری خاک در

سایه مورد طالعه سلسله مراتب توسط

سیستم‌های مختصات از اعماق موردطالعه برداشت شد.

به آزمایشگاه انتقال یافت. جهت تعیین وزن خشک خاک

نمونه‌ها به مدت 24 ساعت در دستگاه آوین گذاشته و سپس

به تقسیم وزن بر حجم منشین سیستم‌های مقدار وزن

زمین ظاهری خاک تعبین شد. برای برادر تولید در

مدل و ویژگی (21) مقدار رطوبت خاک در اینجا ریشه ریز

در ابتدای فصل ویژه مورد نیاز است. در این تحقیق

روتی داده خاک به روش مستقیم اندازه‌گیری شد برای این کار

نمونه‌های خاک مورد نیاز در طول در طریق بکار کا

شده و به آزمایشگاه انتقال یافته و وزن ثابت شد.

وزن نمونه‌ها حساب شده و سپس در داخل آوین گذاشته شدند.

نمونه‌های دوباره وزن و وزن خشک آنها تعبین گردید.

طوفان زراعی و نقطه پایداری در سایه مورد عکس از

آزمایشگاه تعبین گردید. برای این کار رطوبت خاک نمونه‌ها در فشار 100 (TAW) اتصاف اندازه‌گیری شد. در این آزمایشگاه (5) که به

سورت زیر محاسبه می‌شود:

 Ya = Ta / Yp

در اغلب نقاط جهان و از جمله ایران برای برادر تبخیر

و تبخیر گیاه مرجع از روش‌های متکی بر داده‌های اقلیمی و

روش پنگ - مانند فاکتور بهره‌گری موش. محاسبه

شاخص اقلیمی از میدان اقلیمی - مانند تبخیر به شرح

ویژه در مقیاس زمینی و روانه طول فصل وریش از داده‌های

آب و هوایی و پیگیری فیزیکی خاک به مدت ده سال با

اوجتولید بر اثر در این مدل تولید علوفه سالانه (Ta/Tp) در بالاترین نقطه از نقاط اقلیمی (Ta) معادله Ya/Yp = Ta/Tp

درستی این معادله برای زایم 11 نمونه کشاورزی است.

یکی از گروه‌های به عنوان رایج ترین مدل برادر تولید از سوی

پژوهشگران (FAO 1960) از جمله و مورد کاربرد قرار

گرفته است.

بررسی و مطالعه خاک

بر اساس تغییرات مرحله‌ای در طول هر ترارسانک یک

بروی، خاک به معنی جدید نفوذ رشد (جمعه 4 برود) یک

حرف شد و نسبت به تثبیت تیم‌های و انتظار رطوبت

در این موقعیت از رشد فیزیولوژیکی باید بیش از 60 ساله سفری نمونه کن

و به کمک مثلث بیان تعبین گردید. برای تعبین زون مختصات ظاهری خاک در

سایه مورد طالعه سلسله مراتب توسط

سیستم‌های مختصات از اعماق موردطالعه برداشت شد.

به آزمایشگاه انتقال یافت. جهت تعیین وزن خشک خاک

نمونه‌ها به مدت 24 ساعت در دستگاه آوین گذاشته و سپس

به تقسیم وزن بر حجم منشین سیستم‌های مقدار وزن

زمین ظاهری خاک تعبین شد. برای برادر تولید در

مدل و ویژگی (21) مقدار رطوبت خاک در اینجا ریشه ریز

در ابتدای فصل ویژه مورد نیاز است. در این تحقیق

روتی داده خاک به روش مستقیم اندازه‌گیری شد برای این کار

نمونه‌های خاک مورد نیاز در طول در طریق بکار کا

شده و به آزمایشگاه انتقال یافته و وزن ثابت شد.

وزن نمونه‌ها حساب شده و سپس در داخل آوین گذاشته شدند.

نمونه‌های دوباره وزن و وزن خشک آنها تعبین گردید.

طوفان زراعی و نقطه پایداری در سایه مورد عکس از

آزمایشگاه تعبین گردید. برای این کار رطوبت خاک نمونه‌ها در فشار 100 (TAW) اتصاف اندازه‌گیری شد. در این آزمایشگاه (5) که به

سورت زیر محاسبه می‌شود:
دوره رشد گیاه بارای چهار مرحله متغیر شامل مرحله اولیه، مرحله توسعی گیاه، مرحله گیاه قبل و مرحله پایانی فصل به ترتیب 15-22-45-75 روز ب پایه میانگین دوره فیزیولوژی گیاهان غالب و طول مدت زمان فصل روش تعیین شد.

- حداکثر عمق ریشه دوایی

پس از حفر پروفل خاک، حداکثر عمق ریشه دوایی با توجه به عمق ریشه دوایی اندازه گیری شد.

- بارش مؤثر

باران مؤثر به آن قسمت از بارندگی گفته می شود که به داخل خاک نفوذ می کند (عمق 10-15 سانتی متری)

باران مؤثر در فصل روش از روش CROPWAT محاسبه می شد.

- روابط سطحی

در این تحقیق میزان رواناب از روش پیشنهادی (SCS) سازمان حفاظت های آمریکای برآورد گردید.

در این روش ارتفاع رواناب به صورت زیر محاسبه می شود:

$$R_{\text{c}} = \frac{(P-0.25)^2}{(P+0.85)}$$

$$R=0 \quad \text{P} \leq 0.25$$

$$R_{\text{c}}$$ که در آن $$R_{\text{c}}$$ ارتفاع رواناب پ ارتفاع بارندگی

عامل مربوط به نگهداری آب در سطح زمین که مقدار آن CN= $\frac{1000}{CN}$ / 10-10

برابر است:

در این رابطه CN شماره منحنی مربوط به مقدار نفوذ آب در حوضه می باشد.

در روش اصلی این رابطه پارامتر نگهداری رطوبت خاک (S) مربوط به نرخی است که مقدار آب موجود در خاک با

کمک فرمول زیر محاسبه می شود:

$$S = \frac{S_{\text{max}} \times (UL - Sm)}{UL}$$

که در آن Sm مقدار آب موجود در خاک ناحیه رشب قبل از بارندگی

 fundraiser خورشیدی (سایت اینترنتی) یک دانشجوی دانشجویی نظیر تابش خورشیدی (سایت اینترنتی) یک دانشجوی دانشجویی

در معادله پنمن-معادله قانونی محاسبه روزانه هفته گذشته، ده روز پیش از تبخیر و تعوق، علاوه بر داده های تابش خورشیدی (سایت اینترنتی) یک دانشجوی دانشجویی

$$ET=0 = \frac{(Rn-G)}{\Delta + \gamma(1 + 34U2)}$$

$$\gamma = 0.48 \Delta (Rn-G) + \frac{900}{(T+273)} U2 (es-ea)$$

$$\Delta = \gamma(1 + 34U2)$$

$$G = \frac{1387}{(T+273)}$$

$$Rn = \frac{1387}{(T+273)}$$

$$\Delta = \gamma(1 + 34U2)$$

در معادله پنمن-معادله قانونی محاسبه روزانه هفته گذشته، ده روز پیش از تبخیر و تعوق، علاوه بر داده های تابش خورشیدی (سایت اینترنتی) یک دانشجوی دانشجویی

$$ET=0 = \frac{(Rn-G)}{\Delta + \gamma(1 + 34U2)}$$

$$\gamma = 0.48 \Delta (Rn-G) + \frac{900}{(T+273)} U2 (es-ea)$$

$$\Delta = \gamma(1 + 34U2)$$

$$G = \frac{1387}{(T+273)}$$

$$Rn = \frac{1387}{(T+273)}$$

$$\Delta = \gamma(1 + 34U2)$$

در معادله پنمن-معادله قانونی محاسبه روزانه هفته گذشته، ده روز پیش از تبخیر و تعوق، علاوه بر داده های تابش خورشیدی (سایت اینترنتی) یک دانشجوی دانشجویی

$$ET=0 = \frac{(Rn-G)}{\Delta + \gamma(1 + 34U2)}$$

$$\gamma = 0.48 \Delta (Rn-G) + \frac{900}{(T+273)} U2 (es-ea)$$

$$\Delta = \gamma(1 + 34U2)$$

$$G = \frac{1387}{(T+273)}$$

$$Rn = \frac{1387}{(T+273)}$$

$$\Delta = \gamma(1 + 34U2)$$
نتایج میزان تولید علفه

تولید علفه گونه‌های مختلف (قابل استفاده برای دام) بر حسب درجه خشودرسی در شش آمد ابتدا برآورد کننده بر اساس کمترین تولید مربوط به تولید گونه‌های خشودرسی کلاس II (بطور متوسط 28 کیلوگرم بر هکتار) و بیشترین تولید مربوط به گیاهان خشودرسی کلاس III (بطور متوسط 145 کیلوگرم بر هکتار) بوده است.

نتایج

نتایج آزمایشات فیزیکی خاک منطقه مورد مطالعه

اکثر مقاطع با عمق متوسط با پاش سپید نقشه نسبی سگتین می‌باشد. اگر خاک در لایه‌های مختلف خاک بترنگ از سطح زمین ۳/۲ درصد و ۲/۹ درصد بوده و در ناحیه گچ از هیچ یک از نمونه‌ها مشاهده نشد. واکنش اسیدی خاک در افق اول و دوم ۷/۵ و در افق سوم ۸/۷ متری می‌باشد. درصد فراوانی سگتین و سنگ‌بری ۲/۷ درصد با بهره مناسب و با توجه به تابع خاک تهوری پذیری نسبی می‌باشد و در نوع ریش‌های موجود در خاک نسبتاًعمیق و بصورت عمودی در سراسر
جدول 3- معادله رگرسیونی برآورد تولید با استفاده از عوامل اقلیمی در مراتع حوزه شیر کوه

<table>
<thead>
<tr>
<th>درصد</th>
<th>R</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>بارندگی سالانه</td>
<td>0.95</td>
<td>700.08</td>
</tr>
<tr>
<td>بارندگی بیشترین</td>
<td>0.77</td>
<td>4.06</td>
</tr>
<tr>
<td>بارندگی اردبیشتین</td>
<td>0.71</td>
<td>45.62</td>
</tr>
<tr>
<td>گیاهان خوشخوراک کلاس I</td>
<td>0.76</td>
<td>0.77</td>
</tr>
<tr>
<td>بارندگی بیشترین</td>
<td>0.80</td>
<td>42.19</td>
</tr>
<tr>
<td>بارندگی اردبیشتین</td>
<td>0.79</td>
<td>45.70</td>
</tr>
<tr>
<td>گیاهان خوشخوراک کلاس II</td>
<td>0.84</td>
<td>71.78</td>
</tr>
<tr>
<td>بارندگی اردبیشتین</td>
<td>0.80</td>
<td>255.042</td>
</tr>
<tr>
<td>بارندگی بیشترین</td>
<td>0.80</td>
<td>277.046</td>
</tr>
</tbody>
</table>

پربرسی کارایی مدل تعادل آب در براور تولید در مدت مرجع...

مراحل رشد گیاه:

<table>
<thead>
<tr>
<th>مرحله نوشهره</th>
<th>26 روز</th>
</tr>
</thead>
<tbody>
<tr>
<td>مرحله پایانی</td>
<td>96 روز</td>
</tr>
</tbody>
</table>

Beginning of growth= 0.1 - 0.3
Rooting depth= 0.25 - 0.85(m)
Critical depletion(fraction)=0.5 - 0.7 0.7
Yield response=f=0.2 - 0.6 - 0.6 - 0.9
Crop height= 0.50(m)

داده های خاک:

جدول (۵) بر اساس محاسبه برای است بای TAW

TAW=69.67×100/87.08=87.08
Total available soil moisture(FC-WP)=87.08mm/meter
Maximum infiltration rate=172.3(mm/day)
Maximum rooting depth=80(centimetres)
TAM=(1-F.M/FC-PWP)*100

رفتگی اول فصل رویش (سال ۲۰۱۲) =F.M

Initial soil moisture depletion(TAM%)=62%
Initial available soil moisture =14.8

\[d_{T_0} = \text{تکنیک و تعرق گیاه مرجع} \]

\[ET_{act} = \text{تکنیک و تعرق پتانسیل} \]

\[ET_{pot} = \text{تکنیک و تعرق واقعی} \]

\[b = \text{تکنیک و تعرق واقعی} \]

\[a = \text{بنا به تکنیک و تعرق واقعی} \]

\[Y = 1.69 ET_{act} + 257.91 \]

\[\text{مدل براور تولید علوفه} \]

نتایج عامل‌های ورودی مدل cropwat 8.0

داده‌های اقلیمی: شامل ترکیب هرئال و حداکثر سانتی‌گراد، درصد رفتن نسبی، سرعت باد (کیلومتر در روز)، تابش خورشید (ساعت) و بارندگی روزانه (میلی متر) به تفکیک هرسال (دوره فصل رویش) می‌باشد.

داده‌های گیاهی تاریخ شروع رویش، نیم‌جمله اسفند ماه

حداکثر عمق دیشه دولی: ۸۰ سانتی‌متر

\[k_{cim} = 0.35 k_{cmin} = 0.85 \]

\[k_{cend} = 0.8 \]
ارتباط بین تولید علف علوفه با یک نمودار، تخمین و تعریف از طریق تولید علف علوفه را توجه کنید. بر اساس مدل تولید تولید علف به کمک مدل تعادل آب و اقلیم در جدول 4.2 ایجاد است. بر این اساس میانگین تولید علف علوفه منطقه مورد نظر 369/9 کیلوگرم در هکتار بر اورد شد.

بنیان شاخه روش‌گاهی (ET\textsubscript{a}/ET\textsubscript{p}) و تولید علف علوفه ارتباط معنی‌داری مشاهده شد. به طوری که این شاخه می‌تواند 36 درصد از تغییرات تولید علوفه را به اوردو کند (شکل 3).

بر اساس آزمایشات عملکرد مدل بر اوردو، بهترین روش تولید در این منطقه، استفاده از تخمین و تعریف می‌باشد (جدول 5 و 6).

![ازبرورد دراز مدت...](Image)

جدول 4- تخمین و تعریف راهبردهای تولید در منطقه جوزه شیرکوه

| سال | ضریب | کمک | بارندگی مؤثر | ET\textsubscript{a} | ET\textsubscript{p} | ET\textsubscript{a} (kg/ha) |
|-----|-------|-----|-------------|---------|---------|----------------|------|
| 2009 | 0.031 | 150/4 | 126 | 267/95 | 269/97 | 20/09 |
| 2010 | 0.016 | 126 | 126 | 267 | 267 | 20/09 |
| 2011 | 0.016 | 126 | 126 | 267 | 267 | 20/09 |
| 2012 | 0.016 | 126 | 126 | 267 | 267 | 20/09 |

![ازبرورد دراز مدت...](Image)

جدول 5- مقایسه مدل‌های بر اوردو به کمک شاخه‌های آماری در مراتع جوزه شیرکوه

<table>
<thead>
<tr>
<th>پارامتر استفاده در</th>
<th>مدل</th>
<th>ضریب</th>
<th>کمک</th>
<th>بارندگی مؤثر</th>
<th>ET\textsubscript{a}</th>
<th>ET\textsubscript{p}</th>
<th>ET\textsubscript{a} (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBE</td>
<td>158</td>
<td>272</td>
<td>272</td>
<td>272</td>
<td>272</td>
<td>272</td>
<td>272</td>
</tr>
<tr>
<td>RMSE</td>
<td>143</td>
<td>249</td>
<td>249</td>
<td>249</td>
<td>249</td>
<td>249</td>
<td>249</td>
</tr>
<tr>
<td>MSE</td>
<td>143</td>
<td>249</td>
<td>249</td>
<td>249</td>
<td>249</td>
<td>249</td>
<td>249</td>
</tr>
</tbody>
</table>

![ازبرورد دراز مدت...](Image)
بحث و نتیجه‌گیری:
توپیل علوفه در اکوسیستم‌های مرتعی متأثر از عوامل زندگی (دام) و غیر زندگی (اقلیم، چایک، توبوگرافی و ...) می‌باشد. بنابراین برای مدیریت درست در این اکوسیستم‌ها، تشخیص و جد کردین عوامل اصلی غیر متعلق به دست‌امده از اندازه‌گیری‌های میدانی در منطقه مورد مطالعه نشان داد که تغییرات نسبی بیشتر در کمیت و گیفت پوشش گیاهی و تولید منطقه مذکور وجود دارد با توجه به نیازهای دلیل این نمونه‌سازی تولید و چسباندن گیاهی منطقه مورد مطالعه، تغییرات سال به سال بارز برندگی می‌باشد. میزان بارش پوشش گیاهی و عملکرد آن را تحت تأثیر قرار داده در سال‌های مختلف میزان تولید کاهش یافته است. کاهش پوشش گیاهی و تولید در اثر بارندگی توسط محققین زیادی گزارش شده است. (۱) (۲) (۳) (۴) (۵) (۶) (۷) (۸) مطالعه با نتایج تحقیقات ذکر شده در منطقه مورد مطالعه نیز کمبود بارندگی یک عامل محور آمدنش رشد و تولید علوفه محصول می‌شود. ژیبا میزان تبخیر و تعرق مناسب با بارندگی نیست و میزان تبخیر و تعرق خیلی بیشتر از بارش است و میزان همبستگی بین خشک بارندگی تولید کاهش یافته است. کاهش پوشش گیاهی و تولید در اثر بارندگی توسط محققین زیادی گزارش شده است. (۱) (۲) (۳) (۴) (۵) (۶) (۷) (۸) مطالعه با نتایج تحقیقات ذکر شده در منطقه مورد مطالعه نیز کمبود بارندگی یک عامل محور آمدنش رشد و تولید علوفه محصول می‌شود. ژیبا معیارهای بارش پوشش گیاهی و تولید در اثر بارندگی کاهش یافته است. کاهش پوشش گیاهی و تولید در اثر بارندگی توسط محققین زیادی گزارش شده است. (۱) (۲) (۳) (۴) (۵) (۶) (۷) (۸) مطالعه با نتایج تحقیقات ذکر شده در منطقه مورد مطالعه نیز کمبود بارندگی یک عامل محور آمدنش رشد و تولید علوفه محصول می‌شود. ژیبا

جدول ۶- ارزیابی مدل‌ها به کمک شاخص آماری در مراحل حوزه شیرکوه

<table>
<thead>
<tr>
<th>پارامتر استفاده در</th>
<th>شاخص‌های آماری</th>
<th>نتیجه نهایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>ریشه میانگین خطای (RMSE)</td>
<td>اریمی</td>
<td>1</td>
</tr>
<tr>
<td>خطای میانگین شماره‌بندی (MRE)</td>
<td>اریمی</td>
<td>2</td>
</tr>
<tr>
<td>اجرای نسبی (R²)</td>
<td>اریمی</td>
<td>3</td>
</tr>
<tr>
<td>ریشه میانگین خطای (RMSE)</td>
<td>اریمی</td>
<td>4</td>
</tr>
<tr>
<td>خطای میانگین شماره‌بندی (MRE)</td>
<td>اریمی</td>
<td>5</td>
</tr>
<tr>
<td>اجرای نسبی (R²)</td>
<td>اریمی</td>
<td>6</td>
</tr>
</tbody>
</table>

بررسی کارایی مدل تعداد آب در برآورد تولید دراز مدت مرتع...
سالانه را توجه می‌کنند. نتایج حاصل از برآورد تولید علوفه به کمک مدل تغییرات آب و اقلیم در منطقه نشان داد که تولید در اردیبهشت با ۳۰٪ (تولید سال زراعی ۱۳۸۵-۱۳۸۴) بر اثر تغییرات اقلیمی و اقلیمی خاکی ۴۵٪ درصد از تغییرات تولید سالانه را توجیه می‌کند. این مطالعه می‌تواند چنین استنابزی کردن افزایش طول دوره بارش بهبود تولید سالانه علوفه شد. چنین تحقیقات توسط احتمالات و همکاران (۲۰۰۷) نیز تأیید شده است. به عقیده آنها، قابلیت تولید علوفه در شرایط خشکسالی به منظور اعمال مدرن در مراحل نمی‌قابل کاربرد است. به‌طور کلی هر دو مدل برآورد تولید علوفه دارای کاربرد می‌باشند ولی مدل برآورد تولید بر پایه مدل Cropwat و تغییر در سالانه و تغییر در منطقه نشان داد که تبخیر و تعرق واقعی در تولید علوفه، اکثریت گیاهان در منطقه مورد علوفه ارتباط منفی دارند. نتیجه‌گیری می‌باشد که تبخیر و تعرق واقعی در سالانه تغییر آب شرایط محیطی و با توجه به اجرا مدل و برآورد گیاهان، تبخیر و تعرق واقعی در تولید علوفه سالانه در منطقه مورد مطالعه به نحوی توجه می‌گردد که به یک واقعیت مشابه تغییر آب شرایط محیطی و با توجه به اجرا مدل و برآورد گیاهان، تبخیر و تعرق واقعی در تولید علوفه سالانه در منطقه مورد مطالعه به نحوی توجه می‌گردد که به یک واقعیت مشابه تغییر آب شرایط محیطی و با توجه به اجرا مدل و برآورد گیاهان، تبخیر و تعرق واقعی در تولید علوفه سالانه در منطقه مورد مطالعه به نحوی توجه می‌گردد که به یک واقعیت مشابه تغییر آب شرایط محیطی و با توجه به اجرا مدل و برآورد گیاهان، تبخیر و تعرق واقعی در تولید علوفه سالانه در منطقه مورد مطالعه به نحوی توجه می‌گردد که به یک واقعیت مشابه تغییر آب شرایط محیطی و با توجه به اجرا مدل و برآورد گیاهان، تبخیر و تعرق واقعی در تولید علوفه سالانه در منطقه مورد مطالعه به نحوی توجه می‌گردد که به یک واقعیت مشابه تغییر آب شرایط محیطی و با توجه به اجرا مدل و برآورد گیاهان، تبخیر و تعرق واقعی در تولید علوفه سالانه در منطقه مورد مطالعه به نحوی توجه می‌گردد که به یک واقعیت مشابه تغییر آب شرایط محیطی و با توجه به اجرا مدل و برآورد گیاهان، تبخیر و تعرق واقعی در تولید علوفه سالانه در منطقه مورد مطالعه به نحوی توجه می‌گردد که به یک واقعیت مشابه تغییر آب شرایط محیطی و با توجه به اجرا مدل و برآورد گیاهان، تبخیر و تعرق واقعی در تولید علوفه سالانه در منطقه مورد مطالعه به نحوی توجه می‌گردد که به یک واقعیت مشابه تغییر آب شرایط محیطی و با توجه به اجرا مدل و برآورد گیاهان، تبخیر و تعرق واقعی در تولید علوفه سالانه در منطقه مورد مطالعه به نحوی توجه می‌گردد که به یک واقعیت مشابه تغییر آب شرایط محیطی و با توجه به اجرا مدل و برآورد گیاهان، تبخیر و تعرق واقعی در تولید علوفه سالانه در منطقه مورد مطالعه به نحوی توجه می‌گردد که به یک واقعیت مشابه تغییر آب شرایط محیطی و با توجه به اجرا مدل و برآورد گیاهان، تبخیر و تعرق واقعی در تولید علوفه سالانه در منطقه مورد مطالعه به نحوی توجه می‌گردد که به یک واقعیت مشابه تغییر آب شرایط محیطی و با توجه به اجرا مدل و برآورد گیاهان، تبخیر و تعرق واقعی در تولید علوفه

References

