بررسی کارایی مدل تعلق آل در برآورد تولید دراز مدت مرتع (مطالعه موردنی: مرتع استکی جوزه شیر کوه یزد)

الأهم فحیصی ابرقوی، حسین ارزانی و مهدی سلطانی گر فرامرزی

تاریخ دریافت: 1398/9/21 - تاریخ تصویب: 1399/5/20

چکیده
تولید علفه (ذیت‌نواه هواپیمایی اول استفاده برای چرای دام) یکی از مهم‌ترین عوامل مؤثر بر ظرفیت جرایش که منجر از نوسانات آب و هوایی است. استفاده از داده‌های اقلیمی یک روش آسان و کاملاً امکان‌پذیر برای تولید علفه می‌باشد. در این تحقیق به منظور بررسی کارایی مدل‌های آماری در برآورد تولید دراز مدت مرتع و بافت ارتباط بین تولید گونه‌های غالب و مورد تعیف دام با منظورهای اقلیمی (بازندگی، دما، رطوبت، تبخیر و تعرق واقعی و...) در یک دوره آماری ده ساله (از 92 تا 97) مدل تعادل آب و اقلیمی به روش FAO56 (با استفاده از نرم‌افزار Cropwat) و مدل آماری رگرسیون (ساده و چندگانه) در مرتع استکی جوزه شیر کوه مورد استفاده قرار گرفت. ارزیابی مدل برآوردی نشان داد که دقیق‌ترین مدل در منطقه مدل برآورد تبخیر و تعرق واقعی با استفاده از نرم‌افزار Cropwat 8 می‌باشد. با توجه به محاسبه تبخیر و تعرق واقعی در دوره دسالانه ترسالی و خشکسالی مدل برآورد تولید علفه مرتع کشف شد (917.2/لیتری/40 کیلوگرم بر هکتار برآورد گردید. بنابراین می‌توان بیان داشت که تبخیر و تعرق واقعی به عنوان عامل در اقلیمی یکی از فاکتورهای اساسی در بهبود کارایی مصرف آب است. این شاخص اقلیمی می‌تواند در مدل‌های مختلف برآورد پنل‌مختل در تولید علفه با توجه به پروژه خشکسالی و ترسالی به‌منظور تعیین ظرفیت جرای دام در مرتع و توزیع صنعت بیمه جایگزین روش‌های معمول با برآورد یک سال تولید گردند.

واژه‌های کلیدی: تبخیر و تعرق واقعی، شاخص اقلیمی، روش FAO، تولید دراز مدت.

1 - استادیار پژوهشی، بخش منابع طبیعی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان چهارمحال و بختیاری، سازمان تحقیقات آموزش و ترویج کشاورزی، ایران.
2 - استاد دانشگاه منابع طبیعی، دانشگاه تهران
harzani@ut.ac.ir
3 - محقق پژوهشی، بخش منابع طبیعی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی برز، سازمان تحقیقات آموزش و ترویج کشاورزی، برد.

iran
مقدمه
نوشان تولید در طی سالهای مختلف یکی از مشکلاتی است که اکوسیستم‌های مرتعی به‌طور مداوم در مناطق خشک و نیمه‌خشک باید روند رو به پیشرفت و سیاست‌های آب و هوایی از عوامل اصلی تأثیرگذار در تغییرات پوشش گیاهی جهانی در سال‌های مختلف می‌باشد. (2). همین‌طور از دیدگاه تولید مصرف منابع فلزی، داشتن اطلاعات دقیق به هنگام از تولید مصرف می‌باشد. (20) ادراک‌گیری مرتعی تولید و روش‌های مورد استفاده به صرف وقت و هزینه قابل توجهی نیاز دارد. بنابراین یافتن راه‌های ارزان‌تر و آسان‌تر برای اجزاء‌های تولید عوامل مناسب، تغییرات در سیستم‌های مرتعی مورد نیاز است. یکی از آنها بر خلاف معمول، گیاهان متأثر از عوامل اقیمی، در ناحیه گیاه‌شناسی، گیاه‌شناسی و مطالعه تاریخی آنها بطور انتخابی می‌باشد. این مدل مرتعی برای تعیین عوامل در داده‌های بازدهی‌ریزی، محصول حضوری، Weak and Hanks
3. Snowa & Hyder
4. Hart& Carlson
روش تحقیق
با استفاده به منابع بالا، هدف از بررسی تولید بلندمدت متغیر از مدل آماری رگرسیون (ساده و چند sluice) و مدل تعمیق آب بهره‌گیری شد. همچنین نمونه‌های آماری، داده‌های آب و هوایی از نمودن‌ترین ایستگاه‌های سطحپیک (عیان آب) و تولید علوفه واقع مرتین به مدت دسال در مرتع جوهر شورکو، جمع‌آوری گردید. سپس تعمین شاخه‌های اقلیمی (مجری و تعرق گیاه مرتع، تبخیر و تعرق یانریل و واقعی) انداده‌گری رطوبت اول فصل رویش، تبعیض و ویژگی‌های خاک و ویژگی‌های گیاه (مرتع) به روش میدانی، آزمایشگاهی، کتابخانه‌ای و ترکیبی صورت گرفت و در پایان محاسبات و تجزیه و تحلیل به روش زیر انجام گرفت.

مواد و روش‌ها
مختصات و محدوده مورد بررسی
منطقه مورد مطالعه با مساحت معادل ۲۲۶۴ هکتار و محصولات گردوی مخصوص، با محدوده اقیانوسی ۳۱ درجه شمالی و ۵۳ درجه شرقی، با محدوده اقیانوسی ۲۳۱ درجه شمالی و ۳۲ درجه شرقی از سطح دریا و نسبت متوسط ۳۳۲ تا ۲۷۰۰ متر از سطح دریا و نسبت متوسط ۱۵ درصد و در باضی قسمت‌ها بیشتر از ۱۵ درصد تحت عنوان زیرحوزه شیرکوه در جنوب غربی استان یزد قرار دارد (شکل ۱). اقلیم منطقه طبق رویش دام‌دار که به دریاچه که این رویش ربط دارد بررسی شده و دام‌میزان و میزان سالانه آن به ۴۰ دیل میلیتر و متوسط دمای سالانه آن بین ۱۰/۸ تا ۱۲/۶ درجه سانتی‌گراد می‌باشد.

- Artemisia sieberi
- Astragalus myriacanthus

موجود در منطقه در جدول ۱ ارائه شده است. وضعیت منطقه در قسمت‌هایی از سایت ضیغم و گرایش رود آن در محصولات مدنی روی این شهردار، به دلیل قرار گرفتن این واحد در حوالی روستا و منطقه بهره‌برداری بهره‌برداری و شرایط در آن صورت گرفته است و دام غلبه منطقه با می‌باشد.
اندازه‌گیری تولید و پوشش گیاهی

برای اندازه‌گیری تولید و پوشش نتایج (دوره د سال)، بر حسب گونه، از شدت بیش ۲۰ متر مربعی در طول چهار نوار چهارمتری به طور موزایی با فاصله ۱۰۰ متر از یکدیگر که در طول هر یک متر از فاصله بلکه اول نیز از نوا نه تا نوار ۱۰ متری اکثر داده‌ها در قابل فرم نمونه‌برداری با ذکر محدودیت شماره‌ترسانیت، شماره‌پذیری، تاریخ برداشت، نام گونه‌ها و برداشت داده‌ها از جمله بایک است. درصد پوشش مورد بررسی بوده است.

- آماده‌سازی داده‌ها و پوشش گیاهی

برای آماده‌سازی داده‌ها و پوشش گیاهی، بر اساس میزان پوشش، رشد و میزان سطح پوششی، تغییرات در طول زمان و محیط بی‌طرف، داده‌ها آماری مورد استفاده قرار گرفته‌اند. این مقدمه محتوی پوشش، میزان پوشش، تغییرات و رفتارهای مختلف گیاهی در طول زمان و محیط بی‌طرف، داده‌ها آماری مورد استفاده قرار گرفته‌اند. این مقدمه محتوی پوشش، میزان پوشش، تغییرات و رفتارهای مختلف گیاهی در طول زمان و محیط بی‌طرف، داده‌ها آماری مورد استفاده قرار گرفته‌اند. این مقدمه محتوی پوشش، میزان پوشش، تغییرات و رفتارهای مختلف گیاهی در طول زمان و محیط بی‌طرف، داده‌ها آماری مورد استفاده قرار گرفته‌اند. این مقدمه محتوی پوشش، میزان پوشش، تغییرات و رفتارهای مختلف گیاهی در طول زمان و محیط بی‌طرف، داده‌ها آماری مورد استفاده قرار گرفته‌اند. این مقدمه محتوی پوشش، میزان پوشش، تغییرات و رفتارهای مختلف گیاهی در طول زمان و محیط بی‌طرف، داده‌ها آماری مورد استفاده قرار گرفته‌اند. این مقدمه محتوی پوشش، میزان پوشش، تغییرات و رفتارهای مختلف گیاهی در طول زمان و محیط بی‌طرف، داده‌ها آماری مورد استفاده قرار گرفته‌اند. این مقدمه محتوی پوشش، میزان پوشش، تغییرات و رفتارهای مختلف گیاهی در طول زمان و محیط بی‌طرف، داده‌ها آماری مورد استفاده قرار گرفته‌اند. این مقدمه محتوی پوشش، میزان پوشش، تغییرات و رفتارهای مختلف گیاهی در طول زمان و محیط بی‌طرف، داده‌ها آماری مورد استفاده قرار گرفته‌اند. این مقدمه محتوی پوشش، میزان پوشش، تغییرات و رفتارهای مختلف گیاهی در طول زمان و محیط بی‌طرف، داده‌ها آماری مورد استفاده قرار گرفته‌اند. این مقدمه محتوی پوشش، میزان پوشش، تغییرات و رفتارهای مختلف گیاهی در طول زمان و محیط بی‌طرف، داده‌ها آماری مورد استفاده قرار گرفته‌اند. این مقدمه محتوی پوشش، میزان پوشش، تغییرات و رفتارهای مختلف گیاهی در طول زمان و محیط بی‌طرف، داده‌ها آماری مورد استفاده قرار گرفته‌اند. این مقدمه محتوی پوشش، میزان پوشش، تغییرات و رفتارهای مختلف گیاهی در طول زمان و محیط بی‌طرف، داده‌ها آماری مورد استفاده قرار گرفته‌اند. این مقدمه محتوی پوشش، میزان پوشش، تغییرات و رفتارهای مختلف گیاهی در طول زمان و محیط بی‌طرف، داده‌ها آماری مورد استفاده قرار گرفته‌اند. این مقدمه محتوی پوشش، میزان پوشش، تغییرات و رفتارهای مختلف گیاهی در طول زمان و محیط بی‌طرف، داده‌ها آماری مورد استفاده قرار گرفته‌اند. این مقدمه محتوی پوشش، میزان پوشش، تغییرات و رفتارهای مختلف گیاهی در طول زمان و محیط بی‌طرف، D:

- آمار و داده‌های آب و هوایی
TAW = 1000(θ FC - θ WP)Z r

که در این ترجمه می‌کند در این مدل تولید انرژی سالانه (Ta/Tp) در بالاترین نقطه از شاخص اقیمی (Y)‌ترین معادله Ya/Yp = Ta/Tp

درستی این معادله بلافاصله از (11) نتیجه‌گیری است.

همگونی باعث شده مدل تولید انرژی ترکیبی در آب‌های مصرفی (FAO) و (10) توصیف و مورد کمکی قرار گرفته است.

بررسی و مطالعه خاک

پیش‌بینی تغییرات مرفوژتی در طول هر ترکست یک
بروفیل خاک به عمق دو دکتر در فرمولی قاعده‌ای (جمعه ۴ پروفل) معرفی شد و نسبت به تریکمیبیا هندوریا و نیز از طبقات در سال‌های آزادکننده اماه فاصله شد. نتیجه‌گیری‌های ثابت گیاهان و همچنین نغییرات باید، ساختار و رنگ خاک از نظر پیشین نمونه‌گیری شد. مطالعه پایداری درستی این مدل طالعه در هر دستورالعمل بیان خاک در ناحیه تشکیل دهنده مصالح و قابلیت خاک در فناورانه می‌باشد (5).

اب آب سهل‌السیر به صورت زیر محاسبه می‌گردد:

RAW = P.TAW

که در این مدل در صورت اب‌السیر برای شکل‌گیری گیاه

میانگین کسری از کل آب قابل استفاده به کمیت P ضریب P (ضریب تخلیه) به وسیله گیاهان متفاوت مناسبTAB است. این ضریب به‌طور میانگین از ۰،۳ با ریشه کمی عمق و تخلیه با اب قابلیت (میانگین P) و تخلیه (پایین

(کمتر از ۴ میلی‌متر بر ساعت) مناسبی می‌باشد (5).

- تولید تولید انرژی با سه‌تئور آب

در این مدل در ابتلا توسط (واژه، ۱۹۸۱) طراحی شده است با استفاده از خصوصیات اقلیمی، خاک و گیاه، میزان تولید پرواز می‌گردد. تولید سالانه گیاهان بر اساس تخلیه و تعرق در نقطه اوج تولید تولید می‌گردد. تولید سالانه عمق‌دار در نقطه اوج از مدل قرر در ناحیه زیر به دست می‌آید.

\[
\frac{Y_{aq}}{Y_{a}} = \frac{T_{aq}}{T_{a}}
\]

TAW=1000(θ FC - θ WP)Z r

که در این مدل در ابتلا توسط (واژه، ۱۹۸۱) طراحی

شده است با استفاده از خصوصیات اقلیمی، خاک و گیاه، میزان تولید پرواز می‌گردد. تولید سالانه گیاهان بر اساس تخلیه و تعرق در نقطه اوج تولید تولید می‌گردد. تولید سالانه عمق‌دار در نقطه اوج از مدل قرر در ناحیه زیر به دست می‌آید.

\[
\frac{Y_{aq}}{Y_{a}} = \frac{T_{aq}}{T_{a}}
\]
ارجاع: CROPWAT 8 (FAO)
ازبیاز عملکرد مدل پراکنش از منظر بررسی درجه اطمینان و پایداری مدل‌های برآورد، افتضاحی از مراحل اصلی در انتخاب مدل‌های معنی‌دار بودن و کمتر بودن خطای معنی‌دار برآوردی مدل‌های بدون تنبیه باعث انتخاب آن مدل در برآورد تولید می‌شود. بنابراین برای بررسی صحبت مدل‌های بدست آمده و مقایسه مقدار تولید تخمین زده شده توسط مدل با مقادیر واقعی، ابتدا با قرار دادن مقادیر متغیری مستقل در معادلات رگرسیونی مربوطه میزان علوفه برای سال‌های مختلف تخمین زده شد. سپس به کمک جمع‌آوری T مقدار تهیه شده دیگر و در نهایت به کمک چک‌سازی کامپیوتر مونتاژ (R²) به کمک کامپیوتری کمی ضریب نسبی (SE) استاندارد (RMSE)، ریشه میانگین مربعات خطای (R), میانگین خطای ارتباط (MBE) صحت مدل‌های ارزیابی قرار گرفت (18). بر اساس مقدار بیشتری ضریب همبستگی، کمترین خطای استاندارد، کمترین احراز نسبی داده‌ها، کمترین ریشه میانگین مربعات خطای و کمترین میانگین خطای ارتباط مدل‌ها طبقه‌بندی شدند و بهترین مدل در منطقه مشخص گردید.

نتایج
نتایج آزمایشات فیزیکی خاک از مکانه مورد مطالعه

اما محققان دریافت کنند که برای تولید علوفه از طریق داده‌های اقلیمی معادله خطی یک معنی‌دار مستقل باید علوفه از طریق گزارش‌های بالا و صف‌ها در جدول 3 آمده است.

<table>
<thead>
<tr>
<th>جدول 2 - خصوصیات خاک در مناطق حوزه شیرکوه</th>
<th>(cm)</th>
<th>نیروگاه</th>
<th>وزنگذاری</th>
<th>mm/m/TAW</th>
</tr>
</thead>
<tbody>
<tr>
<td>تولید گیاهان شیرکوه کلاس I</td>
<td>28</td>
<td>26</td>
<td>30</td>
<td>26</td>
</tr>
<tr>
<td>تولید گیاهان شیرکوه کلاس II</td>
<td>27</td>
<td>25</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>تولید گیاهان شیرکوه کلاس III</td>
<td>26</td>
<td>24</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>تولید گیاهان شیرکوه کلاس IV</td>
<td>25</td>
<td>23</td>
<td>26</td>
<td>26</td>
</tr>
</tbody>
</table>

نتایج میزان تولید علوفه

نتایج میزان تولید علوفه گونه های مختلف (قابل استفاده برای دام) بر حسب درجه خوشخواریکی در شکل 2 برآورد است. بر این اساس کمترین تولید مربوط به تولید گونه‌های خوشخواریک کلاس II (بطور متوسط 28کیلو گرم بر هکتار) و بیشترین تولید مربوط به گیاهان خوشخواریک کلاس III (بطور متوسط 30کیلو گرم بر هکتار) بوده است.

تعداد
تعداد زیادی خاکی که مکانه مورد مطالعه

در سال‌های آمار برداشته (kg/ha)

برآورد تولید علوفه از طریق داده‌های اقلیمی

معادله خطی یک معنی‌دار مستقل باید علوفه از طریق گزارش‌های بالا و صف‌ها در جدول 3 آمده است.

شبکه 2 - تولید گیاهان موجود در مناطق حوزه شیرکوه بر حسب

در سال‌های آمار برداشته (kg/ha)
جدول 3- معادلات رگرسیونی برآورد تویلید با استفاده از عوامل اقلیمی در مراتع حوزه شیر کوه

<table>
<thead>
<tr>
<th>جدول</th>
<th>R</th>
<th>P</th>
<th>معادله</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0.8</td>
<td>0.012</td>
<td>$Y = 0.182X + 329.225$</td>
</tr>
<tr>
<td>II</td>
<td>0.7</td>
<td>0.077</td>
<td>$Y = 0.077X + 34.83$</td>
</tr>
<tr>
<td>III</td>
<td>0.8</td>
<td>0.014</td>
<td>$Y = 0.146X + 255.042$</td>
</tr>
</tbody>
</table>

پرهیز ارتباط بین تویلید علوفه و متغیرهای مستقل

شنا داد که تویلید کل علوفه در منطقه مورد مطالعه با

متغیرهای مستقل بارش سالانه، بارندگی پیشین (بارندگی

فصل رویش، بارندگی سال قبل) و اردهشات بیشترین

همیستگی را دارد. به طوری که 81 درصد تغییرات تویلید

کل علوفه سالانه را می‌توان با بارندگی اردهشات برآورد

کرد. پرهیز رگرسیون ساده و چندگانه نشان داد تویلید

ギャهان خوشخوراک کلاس I، کلاس II و کلاس III بترتیب

بیشترین همیستگی را با بارندگی اردهشات، بارندگی فصل

رویش و بارندگی پیشین دارد. نتایج رگرسیون چندگانه و

رگرسیون ساده در منطقه مورد مطالعه مشابه بود.

برآورد تویلید علوفه از طریق مدل تولید آبی و اقلیمی:

از نرم افزار 8.0 جهت برآورد تویلید استفاده گردید.

cropwat

نتایج عملکرد ورودی مدل 8.0

دادههای اقلیمی شامل درجه حرارت حادثه و حداکثر

سانتی‌گراد، درصد رطوبت نسبی هوا، سرعت باد (کیلومتر

در روز)، تابش خورشید (ساعت) و بارندگی روزانه (میلی

متر) به تفکیک هر سال (دوره فصل رویش) می‌باشد.

دادههای گیاهی تاریخ شروع رویش، پنجم اسفند ماه

حداکثر عمق دیشه دولوی 8 سانتی متر

ضرایب گیاهی:

$\alpha = 0.35$, $k_{cmind} = 0.85$

$k_{cend} = 0.8$
گزارش علمی پژوهشی مرتع، سال دوازدهم/شماره چهارم/رمضان 1397

جدول ۴- تیکبیر و تعرق مرتع، پتانسیل واقعی و ضریب رویگشایی و برآورد تولید در مرتع حوزه شیرکوه

<table>
<thead>
<tr>
<th>بارود تولید (kg/ha)</th>
<th>ضریب رویگشایی</th>
<th>کق</th>
<th>ET_a</th>
<th>ET_p</th>
<th>ET_{Ta}</th>
<th>سال</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۸-۲۷</td>
<td>۰-۰۷</td>
<td>۰-۰۵</td>
<td>۳۷۸۸۹</td>
<td>۳۷۸۸۹</td>
<td>۳۷۸۸۹</td>
<td>۲۸-۲۷</td>
</tr>
<tr>
<td>۳۸-۴۳</td>
<td>۰-۰۸</td>
<td>۰-۰۶</td>
<td>۳۸۸۸۹</td>
<td>۳۸۸۸۹</td>
<td>۳۸۸۸۹</td>
<td>۳۸-۴۳</td>
</tr>
<tr>
<td>۴۸-۵۴</td>
<td>۰-۰۹</td>
<td>۰-۰۷</td>
<td>۴۸۸۸۹</td>
<td>۴۸۸۸۹</td>
<td>۴۸۸۸۹</td>
<td>۴۸-۵۴</td>
</tr>
<tr>
<td>۵۸-۶۴</td>
<td>۰-۱۰</td>
<td>۰-۰۸</td>
<td>۵۸۸۸۹</td>
<td>۵۸۸۸۹</td>
<td>۵۸۸۸۹</td>
<td>۵۸-۶۴</td>
</tr>
</tbody>
</table>

سال ها مساوی یا بزرگتر از این مقدار است (جدول ۴).

جدول ۵- مقایسه مدل های برآوردی به کمک شاخه‌های آماری در مرتع حوزه شیرکوه

<table>
<thead>
<tr>
<th>پارامتر استفاده در</th>
<th>مدل</th>
<th>کمیت نهایی</th>
<th>RMSE</th>
<th>MBE</th>
<th>SEEOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>برآوردی ۹۲</td>
<td>۴۸۸۸۹</td>
<td>۴۸۸۸۹</td>
<td>۴۸۸۸۹</td>
<td>۴۸۸۸۹</td>
<td>۴۸۸۸۹</td>
</tr>
<tr>
<td>برآوردی ۹۳</td>
<td>۴۸۸۸۹</td>
<td>۴۸۸۸۹</td>
<td>۴۸۸۸۹</td>
<td>۴۸۸۸۹</td>
<td>۴۸۸۸۹</td>
</tr>
<tr>
<td>برآوردی ۹۴</td>
<td>۴۸۸۸۹</td>
<td>۴۸۸۸۹</td>
<td>۴۸۸۸۹</td>
<td>۴۸۸۸۹</td>
<td>۴۸۸۸۹</td>
</tr>
</tbody>
</table>

ارتباط بین تولید علفه سالانه بعنوان متغیر واسته و تیکبیر و تعرق واقعی بعنوان متغیر مستقل نشان داد که تیکبیر و تعرق واقعی (y = ۵۹۰.۰۳x + ۲۶۷.۱۱) از تغییرات تولید علفه سالانه را توجیه می‌کند. برآورد درصد تولید علفه به کمک مدل تعادل آب و اقلیم در جدول ۴ امده است. بر این اساس میانگین تولید علفه منطقه مورد نظر ۳۶۹/۹ کیلوگرم در هکتار برآورد شد.

ارتباط بین تولید سالانه علفه و تیکبیر و تعرق واقعی به تیکبیر و تعرق پتانسیل در مرتع حوزه شیرکوه

برآورد تولید دراز مدت

با توجه به اینکه در این منطقه بهترین روش برآورد تولید، استفاده از تیکبیر و تعرق واقعی است و بر این اساس، پس از برآورد تولید در طی سال‌های ۱۳۸۲-۱۳۸۴، تولید سال زراعی ۱۳۸۶-۱۳۸۷ (۳۶۵ کیلو گرم) به‌عنوان تولید دراز مدت در نظر گرفته شد. برای تولید ۷۰ درصد سال‌ها مساوی یا بزرگتر از این مقدار است (جدول ۴).

شکل ۳- ارتباط بین تولید سالانه علفه و تیکبیر و تعرق واقعی

براساس آزمایش عملاً در دم‌های برآوردی بهترین روش تولید در این منطقه استفاده از تیکبیر و تعرق می‌باشد (جدول ۵ و ۶).
بحث و نتیجه‌گیری:
تولید علوفه در اکوسیستم‌های مرطوب متاثر از عوامل زندگی (دام) و غیر زندگی (الفیلم، خاک، نیوگرافی‌ها و...) می‌باشد. بنابراین برای مدیریت درست در این اکوسیستم‌ها، تشخیص و جدا کردن این عوامل ضروری است. داده‌های دست‌آمده از اندازه‌گیری‌های میانگین در منطقه مورد مطالعه نشان داد که تغییرات در جهت بالا و کمیت پوشش گیاهی و تولید منطقه مذکور دارای تأثیر به تاکید دلیل این نتایج و بوش پوشش میزان در حال تولید کاهش یافته است. کاهش پوشش گیاهی و تولید در اثر بارندگی نسبت‌های مربوط به مقدار زیادی گزارش شده است (11، 6 و 8 مطالعه با تایید تحقیقات ذکر شده در منطقه مورد مطالعه نیز کمبود بارندگی یک عامل مهم کمک کننده رشد و تولید علوفه محصول می‌شود. زیرا میزان تبخیر و تعرق مناسب بارندگی نیست و میزان تبخیر و تعرق خیلی بیشتر از بارش است و میزان همبستگی سنتاژ بارندگی تولید علوفه را تغییر و تعرق اوکلیب و وجود داشته. نتایج نشان داد که در مراتع مورد مطالعه، در سال‌هایی موجب رشد اقلیمی نظر رژیم دمایی، سیالی، تغییرات تحلیلی و صرف داد تغییرات چندانی وجود نداشته ولی میزان بارندگی سالانه بارشان و توزیع آنها و قسمت آن‌ها از سالی به سال دیگر در نوسان است. بررسی روابط همبستگی نشان داد در سال‌های یک‌سانه‌ای هواستانی پوشش بیشتر همبستگی را با تولید مقدار مواد مطالعه دارد. میزان بارندگی کل و یا پراکنش بارندگی در سال بر تولید علوفه مواد مطالعه اثرات بالاتر است. نتایج نشان داد که تغییرات در تحقیقات دیگر نیز تغییر شده است (11، 6 و 8 مطالعه). مناسب‌ترین روابط یا روش‌هایی که درون‌های اصلی بر پوشش با کل تولید علوفه سالانه نشان داد که از بین عوامل مورد

جدول 6-ارزیش‌گذاری مدل‌ها به کمک شاخص آماری در مراحل حوزه شیرکوه

| پارامتر استفاده در | جمع امتیاز | ترکیب نسبی | حاصل مناسب‌ترین | امتیاز
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>رنگ بندی</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>RMSE</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>SEOE</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MBE</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ارزیش‌گذاری</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>RMSE</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>SEOE</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MBE</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>امتیاز</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

بررسی کارایی مدل تعادل آب در بارندگی تولید دراز مدت مرجع ...
بازشده‌های بهاری و قابل رویت، به‌عنوان منبع اصلی تغذیه رطوبت محیطی، نقش مؤثری در تولیدات آنها وارد داشته‌می‌شود. همچنین نیازمندی تولید گونه‌های کلاس II به بازار یاری از قیمت‌ولیمه و قیمت‌رسانی را می‌توان فراموش نکرد. این امکان‌ها بر این شرایط سازنده رطوبت موضعی در این روش ذکر کرده‌اند. این شرایط موارد غذازی ضمن ذخیره‌روش در رشته‌ها، رشد گیاهان در قسمت رویش

با توجه به نتایج از این مدت تهیه آب با استفاده از Cropwat نرم‌افزار، می‌توان در مناطقی که در آن گیاهی و خاک می‌تواند با پس‌های دریایی در کرده‌می‌باشد. این نیازمندی تولید گونه در شرایط خشکسالی بیش از حد مورد نیاز است. به‌طور کلی، در مدت بارندگی نیاز کلرک با کاربردی در بسیاری از مناطق، نیازمندی خاک و نیمه‌خاک از زیادی است.

References