پرورسی تاثیر عوامل محیطی (ارتفاع و خاک) بر کمیت و کیفیت اساسس کاسنی وحشی (Cichorium intybus) مطالعه موردی: لزور-فیروزکوه

سیده خدیجه مهدوی، محمد مصيري، محمد مهدوی و جلال محمودی

تاریخ دریافت: 1397/11/22 - تاریخ تصویب: 1398/02/23

چکیده

تحقیق حاصل به منظور بررسی تاثیر عوامل محیطی (ارتفاع و خاک) بر کمیت و کیفیت اساسس کاسنی وحشی در منطقه لزور از توابع شهرستان فیروزکوه صورت گرفت. نمونه‌ها از اندام‌های هاوی، ریشه و خاک در مرحله گلدهی کامل، از سه دامنه ارتقایی 2200 تا 2700، 3000 تا 3300 متر جمع‌آوری شدند. در آزمایشگاه مقدار 100 گرم از اندام هاوی و ریشه کیهان شکف شده و اساسس گیاهی را بر روی تکنیک‌های آب توسط دستگاه گل‌نگر انجام و سپس اساسس به دست آمد به منظور شناسایی ترکیبات به دستگاه کرومانتوگراف گازی (GC) و کرومانتوگراف گازی متناهی به طیف‌سنج جریانی (GC/MS) تجزیه گردید. نتایج نشان داد بارد اندام هاوی در ارتقایات 2200 تا 2700، 3000 تا 3300 متری برتسبی 0.39، 0.78 و 0.50 درصد می‌باشد. اصلی ترین ترکیب‌های اساسس در اندام هاوی و ریشه باتیپین، سیسکادین-4-آن ۷ آل، سیسکادین هیدرات، ایدوسین، ایدوسین-ایکسید و اکتا بی‌پاسالومول می‌باشد. بارزه اندام ریشه در سه طبقه ارتقایی 2400 تا 2700 و 3000 تا 3300 متری برتسبی 0.32 و 0.32 درصد می‌باشد. رابطه خصوصیات شیمیایی خاک و بارزه اساسس در هر دو بخش ریشه و اندام هاوی نشان داد که بین بارزه اساسس و خصوصیات خاک، بجز pH و EC همبستگی مثبت و موجود دارد. در چسبنامه که هدف برداشت درصد بالایی از اساسس کاسنی بارزد، جمع‌آوری آن در ارتقای 2700 تا 3300 متری پیشنهاد می‌شود.

واژه‌های کلیدی: اساسس، خاک، کاسنی وحشی، فیروزکوه.

1. استادیار گروه منابع طبیعی دانشگاه آزاد اسلامی واحد نور، ایران.
2. دانش‌آموخته کارشناسی ارشد، مرتع‌زیاری، دانشگاه آزاد اسلامی واحد نور، ایران.
3. دانش‌پژوه گروه منابع طبیعی دانشگاه آزاد اسلامی واحد نور، ایران.
4. دانش‌پژوه گروه منابع طبیعی دانشگاه آزاد اسلامی واحد نور، ایران.
5. J_mahmoudi2005@yahoo.com: نویسنده مسئول:

Downloaded from rangelandsmr.ir at 16:19 +0330 on Sunday March 1st 2020
مقدمه

رده کاسنی‌های دوام‌دار (Cichorium) و گونه‌های آن در حالی وقایعی از مرتع برای دام در نظر گرفته شده و دیگر محسوسات آنها با وجود نقش اقتصادی زیاد عمومی از توجه کمتری برخوردارند. در حالت حالی با توجه به افزایش بسیار جمعیت یک گروه و تحقیقات مراجع کاخی نظر مطرح شناسایی پتانسیل استفاده چندمنظوره از مرتع می‌باشد که از مهم‌ترین استفاده‌های چندمنظوره از مرتع می‌توان به تولیدات دوازی و صنعت گیاهان مرغی اشاره کرد. این گیاهان با دلیل دارای بودن عناصر شیمیایی نظیر آکالاپتوئیدها، تانین‌ها و آسیا را به دام می‌باشد و جلب علوفه ای ندارند. با این که به‌خاطر مداخله فنولیزیک خود در مواد غذایی و توانایی آن در جدی مطالعه باشد (2004). عوامل موثر بری بیشتر در طول اقتصادی مقوی به صرفه‌سازی که رفع اصلاحیت دارویی اولیه و توانایی آن در جدی مطلوب باشد (2004). عوامل موثر بر

همگان مقوی قرار می‌گیرند (28). گیاهان دارویی نقش مهمی در زندگی انسان دارد و در ایران از سال‌های طولانی برخوردار می‌باشد (12). گیاهان دارویی زمینی از نظر اقتصادی مقوی به صرفه‌سازی که رفع اصلاحیت دارویی اولیه و توانایی آن در جدی مطلوب باشد (2004). عوامل موثر بر

مراعت رشد گیاه می‌باشد (12). می‌توان از این گیاهان فراهم می‌آورد.

کاسنی، گیاه است از راسته گل‌مندان (12). می‌باشد که رکورد‌های می‌باشد (12)
کردن که عمدتاً ترین آنها
1/21 Gamma- p-cymol
(درصد)، 1/20 Cuminal (درصد)، 1/18 Thymol (درصد)، 1/15 Terpinene (درصد) بوده است (22)، نتایج
تحقيق حسین زاده و لاده مقدم (2018) تحت عنوان Cichorium intybus بررسی ترکیب شیمیایی اساس
در دو منطقه فاضل آباد و آستانه نشان داد که اثر منطقه
جمع آوری بر مقدار ترین کل، فنل، آنتی اسکستنات کل و
فلاتونید کل در سطح احتمال یک درصد معنی‌دار بوده و
مقدار فنل، آنتی اسکستنات کل و فلاتونید کل
در منطقه فاضلآباد به‌طور معنی‌داری از منطقه
آستانه بیشتر بوده است. نتایج نشان داد که در
منطقه فاضلآباد کل و فلاتونید کل در منطقه
آستانه نسبت به منطقه فاضلآباد افزایش و شرایط
سخت محیطی منطقه آستانه برای کاهش گیاه دارویی
کاسی بیان نموده. در منطقه فاضلآباد به‌طور
سقوطی در رنگ، شکر و سموم این گیاه رشد کاهشی داشت
کل، آنتی اسکستنات کل و فلاتونید کل از منطقه
آستانه بیشتر می‌باشد (21).

روش تحقیق

با پیمایش صحرایی و با استفاده از اطلاعات اولیه
محصولاتی که همچنان نقشه و اطلاعات کارشناسان
بخش مرتع اداه منابع طبیعی و اخیر داده شهرستان
فیروزکوه منطقه براکش گونه مطالعاتی در منطقه
ازور مشخص گردید. با توجه به حضور و فراوانی گونه در ارتفاع

2400- 2700 متر، منطقه مورد مطالعه به سه طبقه
ارتفاعی (0-300، 300-600 و 600- 900) تقسیم و در
منطقه، هر طبقه تنوع برداری از سرشاخه‌ها
و ریشه گیاه در ایال مرحله گلدهی انجام شد.
همچنان
نمونه‌های خاک (از عمق 20-30 سانتی‌متری) در محل مورد

2mm نظر تهیه شد. نمونه‌های خاک پس از عبور از الم
جیت آزمایشات فیزیکشیمیایی به شرح
EC، pH و فسفر، نیاسن و بافت خاک می‌شنسند (11).

استخراج اساس

نمونه‌های گیاهی پس از خشک کردن در دمای محدود
به آزمایشگاه با فرآیند گیاهان دارویی موسسه عالی
تجهیزات جنگل‌ها و منابع چهار منطقه و توسعه دستگاه کلینیک با
روش تقطیر آب از آب به مدت 3 ساعت مورد اساس گیر

1- Nandagopal and Kumari
گرفته‌بنا در نظر گرفتن درصد رطوبت، بارده اساس بر حسب وزن خشک (W/W) از رابطه املاح به‌دست‌آمده گردید: (20)

(1) رابطه: 8000 وزن خشک گیاه / وزن اساس = بارده اساس

اساس پس از استخراج، با سدیم سولفات آب‌گیری و از میان ترکیبات حاوی دستگاه‌های کروماتوگرافی در یک نمونه آزمون دانکن در نرمافزار SPSS بررسی گرفت. از ضریب همبستگی پیرسون به‌منظور بررسی اختلاف بین خصوصیات شیمیایی خاک با بارده اساس استفاده گردید و حاوی دستگاه‌های کروماتوگرافی در یک نمونه آزمون دانکن در نرمافزار SPSS با توجه به سطح واریانس به‌منظوری که ترکیبات این دستگاه‌های کروماتوگرافی در یک نمونه آزمون دانکن در نرمافزار SPSS بررسی گرفت تا زمان ترکیب بین دستگاه‌های کروماتوگرافی در یک نمونه آزمون دانکن در نرمافزار SPSS بررسی گرفت. از ضریب همبستگی پیرسون به‌منظور بررسی اختلاف بین خصوصیات شیمیایی خاک با بارده اساس استفاده گردید و حاوی دستگاه‌های کروماتوگرافی در یک نمونه آزمون دانکن در نرمافزار SPSS بررسی گرفت.

جدول 1: دستگاه‌های استفاده شده جهت آنالیز اساس

<table>
<thead>
<tr>
<th>ماهیت دستگاه</th>
<th>ساختار دستگاه</th>
<th>محاسبات دستگاه</th>
<th>حجم جریان (L/min)</th>
<th>فشار جریان (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC/MS</td>
<td>مدل H-P-500</td>
<td>عرض باند: 1</td>
<td>500</td>
<td>300</td>
</tr>
<tr>
<td>GC/MS</td>
<td>مدل H-P-500</td>
<td>عرض باند: 1</td>
<td>500</td>
<td>300</td>
</tr>
<tr>
<td>GC/MS</td>
<td>مدل H-P-500</td>
<td>عرض باند: 1</td>
<td>500</td>
<td>300</td>
</tr>
<tr>
<td>GC/MS</td>
<td>مدل H-P-500</td>
<td>عرض باند: 1</td>
<td>500</td>
<td>300</td>
</tr>
</tbody>
</table>

نتایج

نتایج مربوط به جداسازی و مشخصات ترکیبات موجود در سبک اندام هوایی گیاه کلام، به همراه درصد و اندازه کوارتز آنها در جدول شماره 3 نشان می‌دهد که ارتفاع 2000-2700 متر، تعداد 5 ترکیب (470 درصد) از ارتفاع 2700-3000 متر، تعداد 5 ترکیب (685 درصد) از ارتفاع 3000-3700 متر، تعداد 5 ترکیب (792 درصد) از ارتفاع 4400-4900 متر، تعداد 5 ترکیب (603 درصد) از

<table>
<thead>
<tr>
<th>ترکیب</th>
<th>درصد ترکیب</th>
<th>شیمیایی اساس</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-pinene</td>
<td>1</td>
<td>470</td>
</tr>
<tr>
<td>Camphere</td>
<td>2</td>
<td>470</td>
</tr>
<tr>
<td>Sabine</td>
<td>3</td>
<td>470</td>
</tr>
<tr>
<td>β-pinene</td>
<td>4</td>
<td>470</td>
</tr>
<tr>
<td>Myrcene</td>
<td>5</td>
<td>470</td>
</tr>
<tr>
<td>α-terpinene</td>
<td>6</td>
<td>470</td>
</tr>
</tbody>
</table>

جدول 2: ترکیبات شیمیایی اساس اندام هوایی گیاه Cichorium intybus

<table>
<thead>
<tr>
<th>شیمیایی</th>
<th>ترکیب</th>
<th>درصد</th>
<th>ماهیت</th>
<th>حجم جریان (L/min)</th>
<th>فشار جریان (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-pinene</td>
<td>1</td>
<td>470</td>
<td>500</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Camphere</td>
<td>2</td>
<td>470</td>
<td>500</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Sabine</td>
<td>3</td>
<td>470</td>
<td>500</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>β-pinene</td>
<td>4</td>
<td>470</td>
<td>500</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Myrcene</td>
<td>5</td>
<td>470</td>
<td>500</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>α-terpinene</td>
<td>6</td>
<td>470</td>
<td>500</td>
<td>300</td>
<td>300</td>
</tr>
</tbody>
</table>

نتایج:

نتایج مربوط به جداسازی و مشخصات ترکیبات موجود در سبک اندام هوایی گیاه کلام، به همراه درصد و اندازه کوارتز آنها در جدول شماره 3 نشان می‌دهد که ارتفاع 2000-2700 متر، تعداد 5 ترکیب (470 درصد) از ارتفاع 2700-3000 متر، تعداد 5 ترکیب (685 درصد) از ارتفاع 3000-3700 متر، تعداد 5 ترکیب (792 درصد) از ارتفاع 4400-4900 متر، تعداد 5 ترکیب (603 درصد) از
<table>
<thead>
<tr>
<th>شاخص برداری</th>
<th>درصد ترکیبات 2000-2200</th>
<th>درصد ترکیبات 2200-2400</th>
<th>رنگ</th>
<th>نام ترکیب</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 -</td>
<td>0 -</td>
<td>7</td>
<td>p-cymene</td>
</tr>
<tr>
<td>2</td>
<td>27</td>
<td>37</td>
<td>8</td>
<td>Limonene</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
<td>12</td>
<td>9</td>
<td>1,8-Cineole</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>25</td>
<td>10</td>
<td>cisabinen hydrate</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>17</td>
<td>11</td>
<td>γ-terpinene</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>28</td>
<td>12</td>
<td>transabinen hydrate</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>9</td>
<td>13</td>
<td>Camphor</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>4</td>
<td>14</td>
<td>Transpinocarveol</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>4</td>
<td>15</td>
<td>Pinocarvone</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>2</td>
<td>16</td>
<td>Borneol</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>4</td>
<td>17</td>
<td>terpinene-4-ol</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>4</td>
<td>18</td>
<td>α-terpineol</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>1</td>
<td>19</td>
<td>Myrtenal</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>1</td>
<td>20</td>
<td>Cischrysanthemyl acetate</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>2</td>
<td>21</td>
<td>bornyl acetate</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>2</td>
<td>22</td>
<td>Lavandulyl acetate</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>2</td>
<td>23</td>
<td>Carvacrol</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>2</td>
<td>24</td>
<td>Transcarvyl acetate</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>2</td>
<td>25</td>
<td>Neryl acetate</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>2</td>
<td>26</td>
<td>α-Copaene</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>2</td>
<td>27</td>
<td>β-Cubebene</td>
</tr>
<tr>
<td>22</td>
<td>2</td>
<td>2</td>
<td>28</td>
<td>β-Bourbonene</td>
</tr>
<tr>
<td>23</td>
<td>2</td>
<td>2</td>
<td>29</td>
<td>E-Caryophyllene</td>
</tr>
<tr>
<td>24</td>
<td>2</td>
<td>2</td>
<td>30</td>
<td>(Z)-β-Farnesene</td>
</tr>
<tr>
<td>25</td>
<td>2</td>
<td>2</td>
<td>31</td>
<td>α-Humulene</td>
</tr>
<tr>
<td>26</td>
<td>2</td>
<td>2</td>
<td>32</td>
<td>β-Chamigrene</td>
</tr>
<tr>
<td>27</td>
<td>2</td>
<td>2</td>
<td>33</td>
<td>γ-Muurolene</td>
</tr>
<tr>
<td>28</td>
<td>2</td>
<td>2</td>
<td>34</td>
<td>Epi-Cubenol</td>
</tr>
<tr>
<td>29</td>
<td>2</td>
<td>2</td>
<td>35</td>
<td>Bicyclogermacrene</td>
</tr>
<tr>
<td>30</td>
<td>2</td>
<td>2</td>
<td>36</td>
<td>B-β-Bisabolene</td>
</tr>
<tr>
<td>31</td>
<td>2</td>
<td>2</td>
<td>37</td>
<td>δ-Cadinene</td>
</tr>
<tr>
<td>32</td>
<td>2</td>
<td>2</td>
<td>38</td>
<td>E-Nerolidol</td>
</tr>
<tr>
<td>33</td>
<td>2</td>
<td>2</td>
<td>39</td>
<td>Globulol</td>
</tr>
<tr>
<td>34</td>
<td>2</td>
<td>2</td>
<td>40</td>
<td>Spathulenol</td>
</tr>
<tr>
<td>35</td>
<td>2</td>
<td>2</td>
<td>41</td>
<td>Caryophyllene oxide</td>
</tr>
<tr>
<td>36</td>
<td>2</td>
<td>2</td>
<td>42</td>
<td>Humulene epoxide II</td>
</tr>
<tr>
<td>37</td>
<td>2</td>
<td>2</td>
<td>43</td>
<td>E-Sesquilavandulol</td>
</tr>
<tr>
<td>38</td>
<td>2</td>
<td>2</td>
<td>44</td>
<td>Cisadin-4-En-7-Ol</td>
</tr>
<tr>
<td>39</td>
<td>2</td>
<td>2</td>
<td>45</td>
<td>Caryophylla-4(18),8(15)-Diene-5-α-Ol</td>
</tr>
<tr>
<td>40</td>
<td>2</td>
<td>2</td>
<td>46</td>
<td>α-Eudesmol</td>
</tr>
<tr>
<td>41</td>
<td>2</td>
<td>2</td>
<td>47</td>
<td>Valerianol</td>
</tr>
<tr>
<td>42</td>
<td>2</td>
<td>2</td>
<td>48</td>
<td>α-Bisabolol</td>
</tr>
<tr>
<td>43</td>
<td>2</td>
<td>2</td>
<td>49</td>
<td>Eudesma-4(15),7-Dien-1-β-Ol</td>
</tr>
<tr>
<td>44</td>
<td>2</td>
<td>2</td>
<td>50</td>
<td>Chamazulene</td>
</tr>
<tr>
<td>45</td>
<td>2</td>
<td>2</td>
<td>51</td>
<td>E-Sesquilavandulacte</td>
</tr>
<tr>
<td>46</td>
<td>2</td>
<td>2</td>
<td>52</td>
<td>Bisabolone(6R, 7R)</td>
</tr>
</tbody>
</table>

جمعیت درصد ترکیبات (پایه: اساسی)
نتایج مقایسه میانگین تأثیر ارتفاع بر بازده و ترکیبات عمده اندام هواپیما کاسی‌نی و حشی در منطقه لزور این که در سطح ۲۰۰۰-۲۷۰۰ متری، سپاسکای‌نادن ۴-یا ۳-یا در ارتفاع ۱۲۰۰-۲۰۰۰ متری مرطوب به طبقه ارتفاعی دوم (۲۰۰۰-۲۷۰۰ متری) می‌باشد که اختلاف معنی‌داری با طبقه ارتفاعی اول دارد.

جدول ۳: مقایسه تأثیر ارتفاع بر بازده و ترکیبات عمده اندام هواپیما کاسی‌نی و حشی در منطقه لزور

سطح معنی‌داری	منبع غیرنلم	مقدار	بارزدر ارتفاع
۰/۷۹	بازده اندام	۳۷/۲۸	افزایش
۰/۷۹	بینین	۳۰/۲۰	افزایش
۰/۷۹	سپاسکای‌نایا	۲۴/۳۹	افزایش
۰/۷۹	سپاسکای‌نایف	۲۴/۳۸	افزایش
۰/۷۹	اپوسون	۲۷/۷۴	افزایش
۰/۷۹	هیپوساید	۴۴/۶۵	افزایش
۰/۷۹	ال‌یا	۴۲/۵۳	افزایش
۰/۷۹	الفا بسیابول	۴۸/۵۳	افزایش

نتایج مقایسه میانگین تأثیر ارتفاع بر بازده و ترکیبات عمده اندام هواپیما کاسی‌نی و حشی در منطقه لزور نشان داد که در سطح ۲۰۰۰-۲۷۰۰ متری و کمتری درصد مرطوب به سپاسکای‌نایا ۳-یا ۴-یا در ارتفاع ۱۲۰۰-۲۰۰۰ متری مرطوب به طبقه ارتفاعی دوم (۲۰۰۰-۲۷۰۰ متری) می‌باشد که اختلاف معنی‌داری با طبقه ارتفاعی اول دارد.

جدول ۴: مقایسه میانگین‌های حاصل از بازده و درصد ترکیبات مشترک و اصلی اندام هواپیمای در سه ارتفاع مختلف در منطقه لزور

<table>
<thead>
<tr>
<th>العربيه</th>
<th>حروف</th>
</tr>
</thead>
<tbody>
<tr>
<td>فیروزه</td>
<td>۰/۵۹</td>
<td>۲۴/۷</td>
<td>۲۱/۷</td>
<td>۲۱/۷</td>
<td>۲۱/۷</td>
<td>۲۱/۷</td>
<td>۲۱/۷</td>
<td>۲۱/۷</td>
<td>۲۱/۷</td>
<td>۲۱/۷</td>
</tr>
<tr>
<td>هیپوساید</td>
<td>۲۴/۷</td>
<td>۲۱/۷</td>
<td>۲۱/۷</td>
<td>۲۱/۷</td>
<td>۲۱/۷</td>
<td>۲۱/۷</td>
<td>۲۱/۷</td>
<td>۲۱/۷</td>
<td>۲۱/۷</td>
<td>۲۱/۷</td>
</tr>
<tr>
<td>بینین</td>
<td>۲۱/۷</td>
</tr>
<tr>
<td>سپاسکای‌نایا</td>
<td>۲۱/۷</td>
</tr>
<tr>
<td>اپوسون</td>
<td>۲۱/۷</td>
</tr>
<tr>
<td>ال‌یا</td>
<td>۲۱/۷</td>
</tr>
<tr>
<td>الفا بسیابول</td>
<td>۲۱/۷</td>
</tr>
</tbody>
</table>

حرف ۰ و ۳۷ بینین وجود اختلاف معنی‌دار در ارتفاعات مختلف می‌باشد.

مقایسه خصوصیات حاکی در سه طبقه ارتفاعی نشان دهنده وجود اختلاف معنی‌دار در سطح ۵ درصد می‌باشد.
جدول 5: تناوب تجزیه واربیانخصوصیات خاک در طبقات مختلف ارتفاعی در منطقه نزدیک فیروزکوه

<table>
<thead>
<tr>
<th>مجموع مربعات</th>
<th>درجه ازدی</th>
<th>پاسیم</th>
<th>فسر</th>
<th>نیترژن‌کاهشی</th>
<th>نیترژن‌کاهشی</th>
<th>کربن آلی</th>
<th>درصد و ارتفاع</th>
<th>تعداد</th>
<th>تعداد</th>
<th>تعداد</th>
<th>تعداد</th>
</tr>
</thead>
<tbody>
<tr>
<td>6883.68</td>
<td>3.892</td>
<td>3</td>
<td>1</td>
<td>0.7851</td>
<td>0.7851</td>
<td>0.833</td>
<td>2420/1042</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6883.68</td>
<td>3.892</td>
<td>3</td>
<td>1</td>
<td>0.7851</td>
<td>0.7851</td>
<td>0.833</td>
<td>2420/1042</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6883.68</td>
<td>3.892</td>
<td>3</td>
<td>1</td>
<td>0.7851</td>
<td>0.7851</td>
<td>0.833</td>
<td>2420/1042</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6883.68</td>
<td>3.892</td>
<td>3</td>
<td>1</td>
<td>0.7851</td>
<td>0.7851</td>
<td>0.833</td>
<td>2420/1042</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

نتایج همبستگی بین خصوصیات شیمیایی خاک و پاسیم، کربن آلی و ماده آلی، در خاک (نیترژن، فسر، پاسیم، کربن آلی و ماده آلی) EC و pH خاک همبستگی منفی و با وجود وارد دار.

جدول 6: تناوب همبستگی پیروستون بین خصوصیات شیمیایی خاک و پاسیم اندام هوایی در سه ارتفاع مختلف منطقه نزدیک فیروزکوه

<table>
<thead>
<tr>
<th>EC</th>
<th>pH</th>
<th>ماده آلی</th>
<th>کربن آلی</th>
<th>فسر</th>
<th>پاسیم</th>
<th>نیترژن‌کاهشی</th>
<th>نیترژن‌کاهشی</th>
<th>بارزتی اندام هوایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.874</td>
<td>1</td>
<td>0.874</td>
<td>0.874</td>
<td>0.874</td>
<td>0.874</td>
<td>0.874</td>
<td>0.874</td>
<td>0.874</td>
</tr>
</tbody>
</table>

نتایج مربوط به جناسازی و شناسایی مواد متشکل موجود در اساس ریشه گیاه، به همراه درصد و اندازه کلوشید اناها در جدول 7 نشان می‌دهد که بیشترین مقدار مربوط به ارتفاع 728700/03700 متری می‌باشد. در ارتفاع 728700/03700 متری درصد حجم اساس را در بر می‌گیرد، در ارتفاع 728700/03700 متری، 36 ترکیب شناسایی شده که 1/7/12422 درصد حجم اساس را در بر می‌گیرد.
جدول ۷: ترکیبات اساسی ریشه گیاه کاستی در سه ارتفاع در منطقه نزدیک فیروزکوه

<table>
<thead>
<tr>
<th>عدد ارتفاع</th>
<th>نام ترکیب</th>
<th>رشد ترکیبات</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۰۰۰-۲۵۰۰</td>
<td>α-pinene</td>
<td>۱</td>
</tr>
<tr>
<td>۲۵۰۰-۲۰۰۰</td>
<td>camphene</td>
<td>۲</td>
</tr>
<tr>
<td>۲۰۰۰-۱۵۰۰</td>
<td>sabine</td>
<td>۳</td>
</tr>
<tr>
<td>۱۵۰۰-۱۰۰۰</td>
<td>β-pinene</td>
<td>۴</td>
</tr>
<tr>
<td>۱۰۰۰-۵۰۰</td>
<td>myrcene</td>
<td>۵</td>
</tr>
<tr>
<td>۳۰۰۰-۲۵۰۰</td>
<td>α-terpinene</td>
<td>۶</td>
</tr>
<tr>
<td>۲۵۰۰-۲۰۰۰</td>
<td>α-pinene</td>
<td>۷</td>
</tr>
<tr>
<td>۲۰۰۰-۱۵۰۰</td>
<td>limonene</td>
<td>۸</td>
</tr>
<tr>
<td>۱۵۰۰-۱۰۰۰</td>
<td>cineole-8</td>
<td>۹</td>
</tr>
<tr>
<td>۸۰۰۰-۷۵۰۰</td>
<td>cissabinene hydrate</td>
<td>۱۰</td>
</tr>
<tr>
<td>۷۵۰۰-۷۰۰۰</td>
<td>γ-terpinene</td>
<td>۱۱</td>
</tr>
<tr>
<td>۷۰۰۰-۶۵۰۰</td>
<td>transsabinene hydrate</td>
<td>۱۲</td>
</tr>
<tr>
<td>۶۵۰۰-۶۰۰۰</td>
<td>camphor</td>
<td>۱۳</td>
</tr>
<tr>
<td>۶۰۰۰-۵۵۰۰</td>
<td>transpinocarveol</td>
<td>۱۴</td>
</tr>
<tr>
<td>۵۵۰۰-۵۰۰۰</td>
<td>pinocarvone</td>
<td>۱۵</td>
</tr>
<tr>
<td>۵۰۰۰-۴۵۰۰</td>
<td>borneol</td>
<td>۱۶</td>
</tr>
<tr>
<td>۴۵۰۰-۴۰۰۰</td>
<td>terpinene-4-ol</td>
<td>۱۷</td>
</tr>
<tr>
<td>۴۰۰۰-۳۵۰۰</td>
<td>α-terpineol</td>
<td>۱۸</td>
</tr>
<tr>
<td>۳۵۰۰-۳۰۰۰</td>
<td>myrtenal</td>
<td>۱۹</td>
</tr>
<tr>
<td>۲۹۰۰-۲۲۵۰</td>
<td>cisschrysanthemyl acetate</td>
<td>۲۰</td>
</tr>
<tr>
<td>۱۸۰۰-۱۷۰۰</td>
<td>acetate bornyl</td>
<td>۲۱</td>
</tr>
<tr>
<td>۱۷۰۰-۱۶۰۰</td>
<td>acetate lavandulyl</td>
<td>۲۲</td>
</tr>
<tr>
<td>۱۶۰۰-۱۵۰۰</td>
<td>carvacrol</td>
<td>۲۳</td>
</tr>
<tr>
<td>۱۵۰۰-۱۴۵۰</td>
<td>transcarvyl acetate</td>
<td>۲۴</td>
</tr>
<tr>
<td>۱۴۵۰-۱۴۰۰</td>
<td>acate neryl</td>
<td>۲۵</td>
</tr>
<tr>
<td>۱۴۰۰-۱۳۵۰</td>
<td>α-copaene</td>
<td>۲۶</td>
</tr>
<tr>
<td>۱۳۵۰-۱۳۰۰</td>
<td>β-cubebene</td>
<td>۲۷</td>
</tr>
<tr>
<td>۱۳۰۰-۱۲۵۰</td>
<td>β-bourbonene</td>
<td>۲۸</td>
</tr>
<tr>
<td>۱۲۵۰-۱۲۰۰</td>
<td>E-caryophyllene</td>
<td>۲۹</td>
</tr>
<tr>
<td>۱۲۰۰-۱۱۵۰</td>
<td>β-farnesene (Z)</td>
<td>۳۰</td>
</tr>
<tr>
<td>۱۱۵۰-۱۱۰۰</td>
<td>α-humulene</td>
<td>۳۱</td>
</tr>
<tr>
<td>۱۱۰۰-۱۰۵۰</td>
<td>β-chamigrene</td>
<td>۳۲</td>
</tr>
<tr>
<td>۱۰۵۰-۱۰۰۰</td>
<td>γ-muurolene</td>
<td>۳۳</td>
</tr>
<tr>
<td>۱۰۰۰-۹۵۰</td>
<td>epi-cubenol</td>
<td>۳۴</td>
</tr>
<tr>
<td>۹۵۰-۹۰۰</td>
<td>bicyclogermacrene</td>
<td>۳۵</td>
</tr>
<tr>
<td>۹۰۰-۸۵۰</td>
<td>β-bisabolene</td>
<td>۳۶</td>
</tr>
<tr>
<td>۸۵۰-۸۰۰</td>
<td>δ-cadinene</td>
<td>۳۷</td>
</tr>
<tr>
<td>۸۰۰-۷۵۰</td>
<td>E-nerolidol</td>
<td>۳۸</td>
</tr>
<tr>
<td>۷۵۰-۷۰۰</td>
<td>globulol</td>
<td>۳۹</td>
</tr>
<tr>
<td>۷۰۰-۶۵۰</td>
<td>spathulenol</td>
<td>۴۰</td>
</tr>
<tr>
<td>۶۵۰-۶۰۰</td>
<td>caryophyllene oxide</td>
<td>۴۱</td>
</tr>
<tr>
<td>۶۰۰-۵۵۰</td>
<td>epoxide II humulene</td>
<td>۴۲</td>
</tr>
<tr>
<td>۵۵۰-۵۰۰</td>
<td>E-sesquilavandulol</td>
<td>۴۳</td>
</tr>
</tbody>
</table>
نتایج تجزیه واریانس تأثیر ارتفاع بر بازه اساس ریشه و ترکیبات عمدّه آن در جدول ۱ نشان می‌دهد که متغیر

اهرنگی بر روي آنها تأثیر معنی‌داری در سطح ۱% و ۱۰% می‌کند.

جدول ۶: نتایج تجزیه واریانس حاصل از تأثیر ارتفاع بر روی بازه و ترکیبات عمدّه ریشه گیاه کاسنی و قشّی در منطقه ازور فیروزکوه

<table>
<thead>
<tr>
<th>سطح عمدّه</th>
<th>اندازه</th>
<th>معنی‌داری</th>
<th>ارتفاع</th>
<th>بازه اساس</th>
<th>بیشتر</th>
<th>سیستم‌های ترکیبات</th>
<th>ارتفاع</th>
<th>بازه اساس</th>
<th>بیشتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۴۰۰-۲۷۰۰</td>
<td>۱/۴</td>
<td>۹/۳</td>
<td>۷/۶</td>
<td>۰/۷</td>
<td>۷/۵</td>
<td>۷/۶</td>
<td>۰/۷</td>
<td>۷/۵</td>
<td></td>
</tr>
<tr>
<td>۲۷۰۰-۳۰۰۰</td>
<td>۱/۵</td>
<td>۹/۴</td>
<td>۷/۶</td>
<td>۰/۷</td>
<td>۷/۵</td>
<td>۷/۶</td>
<td>۰/۷</td>
<td>۷/۵</td>
<td></td>
</tr>
<tr>
<td>۳۰۰۰-۳۳۰۰</td>
<td>۱/۶</td>
<td>۹/۵</td>
<td>۷/۶</td>
<td>۰/۷</td>
<td>۷/۵</td>
<td>۷/۶</td>
<td>۰/۷</td>
<td>۷/۵</td>
<td></td>
</tr>
</tbody>
</table>

امامی و پیام‌داران خواص ریشه با طبقه ارتفاعی به اوج و کم‌ترین زمین‌های اساسی با ارتفاع بالا و چسبانی شرایط

بر اساس نتایج جدول ۱۰ بنابراین بازه اساس ریشه با طبقات ارتفاعی مختلفی وجود دارد. این برای طبقات ارتفاعی مختلفی وجود دارد. این برای طبقات ارتفاعی مختلفی وجود دارد.

جدول ۶: مقایسه میانگین‌های بازه اساس ریشه کاسنی و درصد ترکیبات عمدّه اساس در سه ارتفاع مختلف منطقه ازور فیروزکوه

<table>
<thead>
<tr>
<th>ارتفاع</th>
<th>بازه اساس</th>
<th>۱۰۰</th>
<th>۲۰۰</th>
<th>۳۰۰</th>
<th>۴۰۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۴۰۰-۲۷۰۰</td>
<td>۱/۴</td>
<td>۹/۳</td>
<td>۷/۶</td>
<td>۰/۷</td>
<td>۷/۵</td>
</tr>
<tr>
<td>۲۷۰۰-۳۰۰۰</td>
<td>۱/۵</td>
<td>۹/۴</td>
<td>۷/۶</td>
<td>۰/۷</td>
<td>۷/۵</td>
</tr>
<tr>
<td>۳۰۰۰-۳۳۰۰</td>
<td>۱/۶</td>
<td>۹/۵</td>
<td>۷/۶</td>
<td>۰/۷</td>
<td>۷/۵</td>
</tr>
</tbody>
</table>

موادی و فیزیکی EC و pH مثبت و با

بر اساس نتایج جدول ۱۰ بنابراین بازه اساس ریشه با

نیتروژن، فسفر، پاسیم، کرین آی و ماده آیی همیستگی مثبت و با
بحث و نتیجه‌گیری

انجام واکنش‌های متابولیسمی در هنگ موجود زندگی از پشتون‌های تکاملی و نقاط والای تروکراید است که ممکن است تحت تأثیر برخی عوامل محیطی، تغییرات نیز در آنها حاصل شود. با توجه به اینکه بر روی ترکیبات نامی‌گی‌های موجود زندگی گیاه از فاکتورهای اکولوژیکی، مخلوط فیتوژئولوژیکی، زمان برداشت و نوع انگی می‌شود. سیستم تأثیر می‌باید (۴۴) تا (۴۶) و انتشار چارپیان گونه‌های گیاهی از دارویی و غیردارویی (۲۹) تحت تأثیر عوامل مختلف از طریق گونه، اقلیم محیطی، عوامل محیطی از قبل از از سطح در دیگر و خصوصیات فیزیکی-شیمیایی خاک نه تنها بر روی خصوصیات روشی و برکش گیاهان داروی تأثیر می‌دارد. بنابراین کمیت و کیفیت میزان صحت‌گذاری نمی‌تواند به آزمون دستگاه‌های رباتیک و اقلیم محیطی و دیگر عوامل میزان در محدوده درجه دوم از سطح در می‌ممایز عامل در گیاهان اساسی دکتر دمی‌شدن می‌باشد (۳). براساس نتایج حاصل از تجزیه و تحلیل گروه‌بندی‌ها به دست آمده، از ۵۱ ترکیب شناسایی شده در اساس کامیاب و به عنوان موجود زندگی از کوکچتبین تغییرات مربوط به اکسپرسیون تأثیر می‌بدید. این نتایج از انتخاب مناسبی و استقرار آن می‌توان سبب‌گری از واکنش‌های اکسپرسیونی و تشکیل نگیرنده‌ها در میزان (۴۴) و (۴۵). افزایش عدالت در ترکیبات اساسی در آزمایش‌های لازم مغذی بوده است. بنابراین در شرایطی که محل اثر نشسته باشد انتظار است که محل اثر نشسته باشد
شماره موارد:
1. همچنین افزایش میزان اسید و فشار
2. طول روی شده که در افزایش میزان اسید و فشار که افزایش می‌یابد.
3. این نتیجه با بررسی انگیزه توسط خونی و همکاران
4. (۲۰۰۵) که نتیجه گرفته افزایش حرارتی به عنوان یکی از
5. عوارض موتور در افزایش متابولیتهای ناتونه است مطلبی
6. افزایش متابولیتهای ناتونه است مطلبی.
7. افزایش متابولیتهای ناتونه است مطلبی.
8. افزایش متابولیتهای ناتونه است مطلبی.
9. افزایش متابولیتهای ناتونه است مطلبی.
10. افزایش متابولیتهای ناتونه است مطلبی.
11. افزایش متابولیتهای ناتونه است مطلبی.
12. افزایش متابولیتهای ناتونه است مطلبی.
13. افزایش متابولیتهای ناتونه است مطلبی.
14. افزایش متابولیتهای ناتونه است مطلبی.
15. افزایش متابولیتهای ناتونه است مطلبی.
16. افزایش متابولیتهای ناتونه است مطلبی.
17. افزایش متابولیتهای ناتونه است مطلبی.
18. افزایش متابولیتهای ناتونه است مطلبی.
19. افزایش متابولیتهای ناتونه است مطلبی.
20. افزایش متابولیتهای ناتونه است مطلبی.
به طور کلی باید گفت که گیاهان دارویی نقش مهمی در زندگی انسان داشته و زمانی از نظر اقتصادی مفید بوده و به صرفه هستند که مقدار منابع‌های اولیه و ثانویه آن در حد مطلوب باشد. بنابراین می‌توان گفت که ماده همیشه موجود در گیاهان دارویی ارتفاع از سطح زمین در ویژگی‌های خاص است. یا توجه به آن‌ها نمونه‌های بمست و آمده از سه دامنه ارتفاعی 200-400، 2000-2300 و 3000-4300 متری و نیز نمونه‌های خاک، ملاحظه می‌شود.

References

