مدلسازی پرکنش مکانی دو گونه Aeluropus littoralis و Limonium iranicum

لجستیک (مطالعه موردی: مراتع کوری میقان اراک)

حسین باقری، اردوان قربانی، محمدعلی زارع جاهوی، علی اشرف جعفری و کیومرث سفیدی

تاریخ دریافت: ۱۳۹۵/۰۸/۱۵ - تصویب: ۱۳۹۵/۰۸/۱۵

چکیده

این مطالعه با هدف مدل‌سازی گسترش دو گونه Aeluropus littoralis و Limonium iranicum در مراکز اطراف کوری میقان اراک با استفاده از روش رگرسیون لجستیک انجام شد. نمونه‌برداری به‌صورت تصادفی-سیستماتیک در قالب ۲۰ نقطه انجام شد. نتایج نشان داد که در برابر هر دو گونه پراکنش مکانی گونه‌ها به دو مقطع مطالعه تهیه شده میزان تکثیر نفوذی‌های پیشین با نفوذی‌های واقعی با استفاده از چسب‌یابی GIS و SPSS به‌طور متوسط در حدود ۸۳٪ درصد در پراکنش گروه با نفوذی‌های واقعی در برابر هر دو گونه رفته‌است.

واژه‌های کلیدی: رگرسیون لجستیک، Aeluropus littoralis و Limonium iranicum

1- استاداری، بخش تحقیقات منابع طبیعی، مرکز تحقیقات و امورش کشاورزی و منابع طبیعی استان فم، سازمان تحقیقات، آموزش و ترویج کشاورزی، فم.

2- اردوان قربانی، دانشجوی گروه منابع طبیعی، دانشگاه محقق اردبیلی.

3- a_ghorbani@uma.ac.ir

4- استاد دانشگاه تهران، با توجه به نتایج روش رگرسیون لجستیک در بررسی ارتباط بین پراکنش گونه‌ها و عوامل محیطی، این مدل تولیدی با پیش‌بینی گسترش گونه‌ها را در برابر روش‌های شوروردگی دارد. با توجه به عوامل مشخص شده اکنون دو گونه بیاکت در اصلاح و احیا مراتع منطقه به این عوامل توجه لازم می‌گردد.

5- Geostatistic
مقدمه

یکی از مشکلات مناطق خشک و نیمه خشک، وجود تنها محیطی بوده‌ای تنش‌های خشکی و شوری است که برمی‌زد و نمایه‌های تأثیر منفی دارد (14). از این منظره، دانش‌آموزان به نسبت حیاتیت و فضای زیستی، در فرآیندهای جهانی و اقتصادی و همچنین فرهنگی اهمیت بسیار دارند.

Aeluropus littoralis و Limonium iranicum

Astragalus verus Olivier

Agropyron intermedium (Stipa barbata) (Gouan) Parl.

جایگاه گیاهی

2-Logit or natural logarithm

1-Generalized linear model
مواد و روش‌ها

منطقه مورد مطالعه
کویر میقان اراک با مساحت بالغ بر 554.14 هکتار در موقعیت جغرافیایی 39° 30′ از عرض شمالی و 45° 49′ از طول شرقی و در فاصله 15 کیلومتری شمال شرقی اراک در استان مرکزی قرار دارد (23). این میانه از توابع شهرستان گیلانغرب در استان گیلان قرار دارد و بر اساس آمار 30 ساله ایستایه سیستمیک اراک بارندگی سالانه منطقه 367 میلی متر و تبخیر سالانه بر اساس روش پنمن 1446 میلی متر می‌باشد (24). اقلیم منطقه با استفاده از روش دومراتن اصل شده، خشک بیابانی فراشد می‌باشد (25). این منطقه در پست‌تراز تغییر جدی حوضه آبخیز داخی سطح ارتفاع 1650 متر از سطح دریا یکی از منطقات مرتفع شریان زاری ایران محسوب می‌شود و نظر موقعیت جغرافیایی، دمایی و بارش‌های غیابی، با سایر شهرزارهای داخی ایران منتفی‌می‌گردد (11). شکل 1 موقعیت جغرافیایی منطقه مورد بررسی را (با مساحت 176 هکتار) که نکه نمکی کویر میقان و اراضی شوروری حاشیه آن که به عنوان منطقه مورد مطالعه انتخاب نشده را به همراه تیپ‌های گیاهی در ایران و استان مرکزی نشان می‌دهد.

شکل 1: موقعیت منطقه مورد مطالعه در ایران و استان مرکزی به همراه محل بروفیله گیری خاک و تیپ‌های گیاهی شناخته‌شده

```
```

(25) پراکنش بالقوه تیپ‌های جنگلی را در جنگل‌های ارمنستان به روش رگرسیون لجستیک پیش‌بینی کرده و این روش را روش مناسبی برای بررسی تأثیر عوامل مختلف بر پراکنش سیب زمینی مختلف جنگلی معرفی نمودند (25). همچنین در رابطه با استفاده از روش رگرسیون لجستیک پژوهش‌های دیگری نیز صورت گرفته است (18، 25، 27، 32). احیای پوشش گیاهی و حفاظت خاک در مراحل خشک و بیابانی نیازمند پیشگیری و یا بذرکاری با گیاهانی است که به خوبی جواننده، استقرار یافته و پیشگیری در شرایط شور و خشک ادامه حیات بدهند. به دلیل سارکاری کیاهانی پهناوی با محتوای کریستالگی و استفاده از آنها در طرح‌های احیای مناطق شور، آگاهی از پراکنش مکانی این گونه‌ها، شناسایی شرایط مناسب که جامعه گیاهی را حفظ کنند و عکس العمل گونه‌ها در مقابل گردانی‌های محیطی حائز اهمیت است. از این رو تحقیق حاضر با هدف شناسایی مهمترین عوامل محیطی مؤثر بر حضور و پراکنش دو گونه Halimion verruciferum و A. littoralis در مناطق اطراف کویر L. iranicum و Halocnemum strobilaceum می‌باشد. این انجام و تحقیه بر پراکنش این گونه‌ها تهیه و همچنین عوامل موربیا شرایط حضور گونه‌ها مشخص نا اطلاعات مورد نیاز در امر احیای و تیپ‌های گونه‌ها برای مناطق جدید با شرایط مشابه می‌باشد.
تجزیه و تحلیل داده‌ها

از روش رگرسیون لجستیک دوتایی به منظور تعیین
مهم‌ترین عوامل محیطی مؤثر بر پراکنش
گونه‌های مورد مطالعه استفاده شد. در این روش، مدل
وایبسته داده‌ها رعایت مصرف به محیط و عدم حضور گونه‌های
مسالماتی رود به است. این روش به ترتیب با کد 1 و 0 در متغیر
داده در نظر گرفته شد و مدل‌های مستقل داده‌ها مربوط
به عوامل محیطی بوده است. این‌ها هر دو متغیر به
بررسی و جفت متغیرهای دارای همبستگی بالای r=0.75 با
VIF الرابطه 1 رابطه کلی رگرسیون
(لچستیک) را نشان می‌دهد.

$$y = \frac{\exp(b_0 + b_1 x_1 + \ldots + b_n x_n)}{1 + \exp(b_0 + b_1 x_1 + \ldots + b_n x_n)}$$

که در این معادله Y احتیاط رخداد گونه مورد نظر و
ضرایب مدل رگرسیون و ها متغیرهای
پیش‌بینی کننده (متغیرهای مستقل محیطی) می‌باشند.
برای ارزیابی مدل‌های پیش‌بینی حاصل از آزمون تک‌تیکی
برنامه مدیریت محیطی و
پیش‌بینی شده را نشان می‌دهد (یک بودن مقدار
شانده تنظیم پیشرفت)، استفاده شد. برای تهیه نقشه
پیش‌بینی آزمون بود که نقشه تمام عوامل موجود در مدل
تهیه شود. این داده‌ها از مدل رگرسیون با استفاده از
۲۰ متری، نقطه‌نامه‌های ارتفاع، شبیه و جهت
ارتباط و ساختار فضایی نمونه‌برداری با استفاده از
GS+ یک تجربه و تحلیل تغییرات با واریانگام در نمودار
(۳۹) انجام شد. اگر بیزگی به طور مداوم در ابعاد مکانی تغییر
کند آن را تغییرات نشان داد، تغییرات تغییرات
فواصلی با تغییر و ساختار متغیرهای تغییرات
باشد، نشان‌دهندگی ساختار فضایی گسترش‌دار است و

3. Digital elevation model

1. Variance Inflation Factor
2. Hosmer & Lemshow
نتایج

جدول 1 متغیرهای اندازه‌گیری شده در منطقه مورد مطالعه، میانگین و نوسانات آنها را بر اساس انحراف معیارنشان می‌دهد. دریافتی آن جدول نشان‌دهنده آمار تولید می‌باشد. در حال حاضر 3 روش رژیمی لغیزمند و آزمون هواسم و استفاده را برای تحقق موارد مشاهده شده و پیش‌بینی شده نشان می‌دهد. با توجه به ضرایب تحلیل و نتایج آزمون هواسم و لحیظه رابطه لجستیک تطابق خوبی به داده‌ها داشته و رابطه‌ها به دست آمده در مطالعه مشابه هستند.

راوی رژیمی 2 و 3 مربوط به روش‌های مورد بررسی می‌باشد. با توجه به رابطه 2 محیطی مورد با توجه به رابطه 2 محیطی تغییرکنار در گسترش روش‌ها L. iranicum محیطی مورد تغییرکنار در گسترش روش‌ها L. iranicum محیطی T

اماده جدول 1: نتایج مطالعات خاک‌شناسی و مقایسه خصوصیات خاک عمق دوم در تپه‌های گیاهی

<table>
<thead>
<tr>
<th>کیفیت</th>
<th>کپرنس (ppm)</th>
<th>کلسیم (ppm)</th>
<th>سیاه (ppm)</th>
<th>امینات (ppm)</th>
<th>ماهیت (%)</th>
<th>pH</th>
<th>EC (ds/m)</th>
<th>سنگ (%)</th>
<th>سبز (%)</th>
<th>روشن (%)</th>
<th>گیاه</th>
<th>گیاه</th>
<th>گیاه</th>
<th>گیاه</th>
<th>گیاه</th>
<th>گیاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>گیاه</td>
<td>174.87</td>
</tr>
<tr>
<td>گیاه</td>
<td>174.87</td>
</tr>
<tr>
<td>گیاه</td>
<td>174.87</td>
</tr>
<tr>
<td>گیاه</td>
<td>174.87</td>
</tr>
<tr>
<td>گیاه</td>
<td>174.87</td>
</tr>
</tbody>
</table>

1- Hosmer & Lemshow Test
جدول 2: آماره‌های مربوط به رگرسیون لجستیک

<table>
<thead>
<tr>
<th>R²</th>
<th></th>
<th>ضریب رگرسیون</th>
<th>امتیاز</th>
<th>دیدگاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>0/3527</td>
<td>7/23</td>
<td>A. littoralis</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0/3527</td>
<td>7/23</td>
<td>L. iranicum</td>
</tr>
</tbody>
</table>

\[P(L. iranicum) = \frac{\text{Exp}(-12.58Silt}-2.598\text{Lim2}+25.14\text{Sand1}+407.52)}{1+\text{Exp}(-12.58Silt}-2.598\text{Lim2}+25.14\text{Sand1}+407.52)} \]
\[P(A. littoralis) = \frac{\text{Exp}(27.527\text{Lim1}+33.42abs-5648.4)}{1+\text{Exp}(27.527\text{Lim1}+33.42abs-5648.4)} \]

در جدول 3 آماره‌های مربوط به تغییرهای خصوصیات خاکی وارد شده به مدل ارایه شده است. در جدول 4 نیز مقادیر آستانه بهینه حضور و میزان توانا بین نقشه‌های پیش‌بینی و واقعی با استفاده از شاخص کایا ارایه شده است.

<table>
<thead>
<tr>
<th>رابطه</th>
<th>دنیا</th>
<th>د Leeds</th>
<th>دتنورت</th>
<th>د کروی</th>
<th>د سفتی</th>
<th>د کروی</th>
<th>0/3527</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>2/7</td>
<td>2/7</td>
<td>2/7</td>
<td>2/7</td>
<td>2/7</td>
<td>2/7</td>
<td>2/7</td>
</tr>
<tr>
<td>4</td>
<td>2/7</td>
<td>2/7</td>
<td>2/7</td>
<td>2/7</td>
<td>2/7</td>
<td>2/7</td>
<td>2/7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>د نظر</th>
<th>آماره‌های مربوط به تغییرهای خصوصیات خاکی وارد شده به مدل‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>5/610</td>
</tr>
<tr>
<td>3</td>
<td>2/7</td>
</tr>
<tr>
<td>4</td>
<td>2/7</td>
</tr>
</tbody>
</table>

جدول 4: آماره‌های مربوط به تغییرهای خصوصیات خاکی وارد شده به مدل‌ها

<table>
<thead>
<tr>
<th>دیدگاه</th>
<th>1/5</th>
<th>1/5</th>
<th>0/3527</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. littoralis</td>
<td>1</td>
<td>1</td>
<td>L. iranicum</td>
</tr>
</tbody>
</table>
بحث و نتیجه‌گیری

بر اساس نتایج به‌دست‌آمده از رگرسیون لجستیک، ضریب کایا برای ارزیابی مدل‌سازی پراکنش گونه‌ای (L. iranicum) برای روش‌های گونه‌ای مقدار 0/33، و برای A. littoralis مقدار 0/65 به‌دست آمد که توانایی آنها با نشانه واقعی بر اساس طبقه‌بندی مونسرو و لمنز (1992) به ترتیب در سطح خوب و خوب می‌باشد. مقادیر کایا بالاتر از 0/5 نشان‌دهنده یک مدل عالی می‌باشد (20/0)، که بر اساس نتایج ما روش‌های گونه‌ای L. iranicum لجستیک توآست است. روش روش‌های گونه‌ای گونه‌ای را به صورت مطلوب و قابل قبول پیش‌بینی کننده که با کارکرد 200/0 همبستگی دارد. مدرس گرچی (20/15) در مقایسه روش‌های گونه‌ای لجستیک با روش تحلیل تابع تشخیص در پراکنش تب چنگال‌های امروده به‌دست نیز گزارش کرده که صحت کلی روش‌های گونه‌ای لجستیک در مقایسه مطلوب‌تر بوده است (20/6). هر چند هر که در برخی پژوهش‌ها عملکرد روش‌های گونه‌ای لجستیک را برای گونه‌های با شرایط روش‌های مختلف مفاهیم عنوان کرده‌اند (32)، بدین مفاهیم که در برخی مناطق این روش از کارآیی مطلوب برخوردار نبوده است.

بر اساس نتایج مدل رگرسیون لجستیک برای روش‌های گونه‌ای L. iranicum مثبت‌های محیطی سیلت و آهک در عمق دوم و شن در عمق اول از عوامل مؤثر در
دولیه بر باهته تجمع واقوئلی و جذب آب و حفظ غلظت
پایدار سلولی بود. محدوده تحميل به شوری را در خود
افرازی داده. این در حالت است که هالوفیت‌های تکله‌ی
به جبه ساخن‌ی، محدودی گوئوکسند داشته و از
بیشترین استراتژی میدریحت می‌باشد. از آن‌ها وابسته به
غذای تکه‌ی خوشه گوئوکسند تکله‌ی A. littoralis
تأمین پوشه مرتعی در اراضی شهر و حاشیه‌های می‌تواند
نقش مؤثری در حفاظت دنیای آب و خاک و فراهمی نیاز
علوفه‌ای داشته باشد. از این نظر می‌تواند آن می‌باشد
اکنون در خراسان شمالی در کرمان دوم پلازا ظهور شده
(39) با توجه به اهمیت بررسی ساختار گیاهان مقاوم به
شوری و استفاده بهره‌مندی از گیاهان می‌تواند در اصلاح
خاک و شناسایی مکانیزم‌های مرطوبه برای کاهش
تحقیقی باشیزد. در این‌ها دیده‌گاه‌های مثبتی را ارائه کرد
(10) احیای پوشه گیاهی تخریب‌شد و حفاظت خاک در
مراتع خشک و بیابان نیازمند بوده کاری با یکدیگر با
گیاهان است که به خوبی جوانده‌های اقتصادی و اجتماعی
در شرایط شریف و خشک ادامه حیات به دهد. استفاده از
روش‌های بیولوژیک برای مقابله با بیابان‌زای زمانی
ارزشمندتر خواهد کرد که از گونه‌های با رزش و بومی منطقه
استفاده شود. اگر با نتایج مدل بوده که درست آمده از این
تحقیق می‌توان نوبت‌گیری برای دریافت کشتگونه‌های
مورد بررسی را شناسایی و زیست‌شناسی‌ها، احیا و اصلاح این
گونه و در انتهای مناطق به هدف افزایش در محیط طبیعی
بسیاری شد.

در مجموع، با نتیجه نشان می‌گردد که سطح
در بررسی ارتباط بین پراکنش گونه و عوامل محیطی این
مدل توسعه گسترش گونه‌ها با موقعیت‌های بهینه‌گی
بنابراین از این مدل می‌توان در پیشنهاد گوشاه
گونه‌های شوری استفاده کرد. همچنین در اصلاح و احیا
مراجع منطقه‌ای باعث بی‌抑え‌مود بر انتشار گونه‌ها توجه لازم
می‌شود.

Aeluropus littoralis و Limonium iranicum

Aeolopoeus lagopoides

گزارنده کننده که این گونه و گونه‌ای
که از گنبدیان چند ساله می‌باشد، به شوری مقاوم هستند
و از نظر باید خاک معمولاً خواهان خاک‌هایی با یافته
متوسط تا سبک به‌جود و بوده در جای خاک‌های دستگی روش
دارند و از این گونه‌ها در انتخاب جنوبی کشور به عنوان
کننده استفاده می‌شود. همچنین رضوی و همکاران
(2007) بیان می‌نمودن که این گیاه علفی و شخصی با سیستم فتوتریزی
C4 نواحی رشد در خاک‌هایی به‌هایت‌کریکی
C6 بسیاری شد.

Puccinellia distance littoralis

بررسی‌های شوری و مقاومت کامپلیکسی به خشکی دارد.
در

A. littoralis

اهکت 27/4 درصد در ظهور و پراکنش گونه
در منطقه طاقان میلی تأثیر مثبت داشته است.
بررسی نسبی روش‌گاه گونه توسط کارگر و
همکاران (2012) نشان داد که رشد گونه با میزان
کربنات خاک همکستگی مثبت اما با افزایش شوری و قلبایت
خاک همکستگی منفی دارد. مدل بی‌سند آمده برای
روشگاه گونه نیز نشان داد که یک‌گیاهی
اهکت عمق اول و ارتفاع از سطح در در شکل گیری روشگاه
این گونه در این منطقه نقش پررنگ‌تری نسبت به سابع
متغیرها دارند و افزایش در مقادیر این دو متغیر شرایط را
برای استقرار این گونه از فرم موی را نشان می‌دهد.
(5) بارہویه و همکاران (2007) افزایش محتوای
دربن در سیستم و کاهش توانایی را تحت شوری در گونه
References

