تلفیق تکنیک‌های داده‌کاوی و پارامترهای فیزیکی و شیمیایی خاک در برآورد درصد پوشش گیاهی

چکیده

شناسه اجرایی آکوستیم مرتفع و دست‌بایی به روابط بین اجزای آن از جمله خاک و پوشش گیاهی، از ضروریت‌های مهم‌ترین تکنیک‌های داده‌کاوی سیستم جهانی محیط زیست است. به‌منظور کاهش درصدی پوشش گیاهی، در این مطالعه به‌منظوری که روابط بین این عوامل می‌تواند کمک به‌سیاری در زیمنه‌های به‌منظوری نمونه‌برداری و آزمایشات خاک داشته باشد. در این مطالعه به‌منظوری از تأثیر برخی خصوصیات خاک بر درصد پوشش گیاهی در مراتع دشت‌بزرگ اردنکان و نبودن اطلاعات مربوط به پوشش‌گیاهی در قابل ۲۷۰ بالات در طول ۴۰ تا ۶۰ تا رعاس‌کلمات رشد و بهبود خاک از دو عمق صفر تا ۲۰ سانتی‌متری برخی پارامترهای خاک و شیمیایی به‌منظوری استفاده شد و شکایت در سه‌گروه احتمالی از درصد پوشش درون‌دهی متغیر به‌منظوری پارامترهای خاک از تکنیک‌های داده‌کاوی استفاده شد و شکایت در سه‌گروه احتمالی

واژه‌های کلیدی: پارامترهای خاک، درصد پوشش، داده‌کاوی، درنده‌دهی

۱- دانشجوی کارشناسی ارشد مرتدیاری، دانشکده کشاورزی و منابع طبیعی، دانشگاه اردکان، اردکان، ایران

۲- استادیار کوه‌سنجی طبیعی، دانشکده کشاورزی و منابع طبیعی، دانشگاه اردکان، اردکان، ایران

۳- دانشجوی دکتری آبخیزداری، دانشکده منابع طبیعی، دانشگاه تهران، تهران، ایران

msadeghinia@ardakan.ac.ir
Artemisia frigida and Artemisia austriaca. The effectiveness of Artemisia frigida and Artemisia austriaca on the growth of different grass species was studied. The results showed that the growth of both grass species was significantly greater in the presence of Artemisia frigida and Artemisia austriaca. Additionally, the results indicated that the growth of the grass species was affected by the type and density of Artemisia species. The findings suggest that Artemisia species could be used as a natural herbicide for the control of grass species.
برای آگاهی بیشتر این متن را پرداخت.

کلمات کلیدی: گیاهان وحشی، اکوسیستم، اکوسیستم محیطی، بررسی، مختصات، استاندارد، دانشمند.
هنین منظور، محدوده‌های به وسعت 10 هکتار در منطقه‌ی مصرف هزینه‌ای مناسب و در مقياس‌های کوچک و محلی بیشتر تحت تأثیر کاخ و عامل‌های توریزما می‌گردد (11) و همچنین با توجه به اهمیت برآورد درصد پوشش گیاهی و بررسی روند تغییرات آن در سال‌های مختلف لازم است تا محققین به دریافت روش‌های جدید و کم هزینه قطعه برآورد درصد پوشش نبود استفاده از ابزارهای همیانی باشد. لذا با توجه به تأثیر گیاه‌گیری های پوشش گیاهی دارند، در این مطالعه با پیش‌bih درصد پوشش گیاهی بر منابع اکوسیستمی کاخ با استفاده از روش‌های پادگیری ماشین برداشتند.

مواد و روش‌ها

1- معرفی منطقه مطالعاتی

محدوده مورد مطالعه بخشی از دشت یزد- اردکان و همچنین منطقه ندوزنی یا باند. دشت بند اردکان که در ناحیه شمالی در فاصله مرکز ایران و در بخش مرکزی استان یزد واقع شده است. مساحت این حوضه 1175 کیلومترمربع است که ۴۱۱۷ کیلومتر آن، دشت اصلی و ۳۰۰۰ کیلومترمربع ان در ابزارهای و ۸۹۵ کیلومترمربع نواحی به ماهور، شوروند و تلخ‌ها و به‌طور دسته‌ای مقدار بسیاری جایگاه‌های و میان‌کوهی تشكل می‌دهد. از شمال به صحرای سیاوشی گز و از شرق به شهرستان خرانق، از جنوب به رسته‌کوه شیرکو از غرب به شهرستان ندوزن می‌شود. میزان ارتفاع دشت یزد- اردکان از سطح دریا ۱۵۶۵ متر می‌باشد. همچنین منطقه ندوزن در محدوده جغرافیایی ۳۱ درجه و ۴۵ دقیقه تا ۳۳ درجه و ۴ دقیقه عرض شمالي و ۶۳ درجه و ۲۸ دقیقه تا ۷۲ دقیقه طول شرقی قرار داری. مرافع این جوزه در دیدن مراتع بسیار یافته است. به همین ترتیب گاهان بیشتر در محور و میوست دمای سالانه این با بررسی داده‌های ۲۰ ساله، ۳۰ درجه سانتی‌گراد می‌باشد.

۲- روش نمونه‌برداری پوشش گیاهی و خاک

در اواخر دوره‌های سال ۱۳۹۷، ۱۰ منطقه‌ی مربوط شناسایی شدند سپس به منظور اندام‌هایی یا درصد پوشش گونه‌های ظاهری و سایر گونه‌های موجود در هر روش‌ها از روش پلاک‌گزاری در امتیاز ترکیب‌های استفاده شد. به

![شکل ۱: موقعیت منطقه و استکبارهای مورد مطالعه](image-url)
فاریان گوسی یک روش پایگاهی مانندی غیرپارامتری قوی برای ایجاد مدل‌های احتمال‌گذاری جامع از مسائل دنبال واقعی است. فاریان گوسی یک فاریان تصادفی است که مشکل از مقدار تصادفی در هر نقطه در یک دامنه زمانی یا مکانی است بهطوری که یک از متغیرهای تصادفی دارای توزیع نرمال می‌باشد. هر مجموعه متغیری از این متغیرها تصادفی دارای توزیع نرمال چند متغیره است. یک فاریان گوسی تولید داده‌هایی می‌کند که در طول این طبقه قرار دارند بهطوری که به زیر مجموعه متناهی دانه‌ای یک توزیع گوسی چندمتغیره را دنبال می‌کند (9).

(1) 4- یادگیری ماشین

علم یادگیری ماشین از علوم مختلفی از جمله آمار، هوش مصنوعی، یادگیری ماشین، شناسایی الگو و پایگاه داده ناکام گرفته است. در واقع این علوم از رویه‌های علم پایگاهی ماشین هستند. الگوریتم‌های موجود در هوش مصنوعی و علم آمار کمک شایانی به یادگیری ماشین می‌کند. فاریان‌دهی یادگیری ماشین شامل 3 مرحله آماده‌سازی داده، یادگیری مدل از نظریه و تفسیر مدل می‌باشد. مدل‌های اجرا شده در این مطالعه به شرح زیر می‌باشند:

(2) K-Nearest Neighbors

الغ: نزدیک‌ترین همسایه

هنگام نزدیک‌ترین همسایه در راه‌حل‌های مسائل مشابه که قبلی حل شده‌اند راجع به مدل‌های استفاده شده. در این روش تصمیم‌گیری در مورد تخصیص نمونه جدید به کلاس یا دسته‌بندی نمونه‌ها به کلاس بررسی و با تعداد نمونه‌ها می‌باشد. همسایگی در مجموعه آموزش انجام می‌شود. تعداد نمونه‌ها به کلاس کلاس می‌شود و نمونه جدید به دستالا که تعداد نمونه‌ها به آن تعلق دارد نسبت داده می‌شود (18).

(3) Feed Forward Neural Network

ب: شبکه عصبی مصنوعی پس انتشار خطا

شبکه عصبی حذفی شامل سه لایه ورودی، خروجی و لایه مخفی است. هر نر در یک لایه ورودی را از لایه قبل دریافت کرده آن را بهعنوان خروجی نرون در لایه بعدی انتقال می‌دهد. مجموع وزن‌های ورودی اشاره شده با رابطه (3) محاسبه می‌شود و این مجموع به وسیله یک تابع غیرخطی انتقال می‌یابد (19). نتایج شبکه با نتایج واقعی مقایسه شده و خطای شبکه توسط معادله محاسبه می‌شود.

روند آموزش تا زمانی که خطای به مقدار قابل قبولی برسد ادامه می‌یابد (رابطه 3).
یکی از طبقه‌بندی‌های محبوب و متأثر برای دسته‌بندی پیش‌بینی می‌باشد که پیاده‌سازی آن آسان، ساده و تفسیر نتایج از آن امکان پذیر است. درخت تصمیم قادر به تولید توصیف‌های دقیق برای پایان‌رسیدن استفاده می‌شود. در این روش از روش‌هایی که از نظر پراکنده‌ای آماده برای انتخاب مناسبی استفاده می‌شود. این روش یادگیری برای توسعه گسترش داده‌های خطا در کار می‌رود و به کشف دانش کمک می‌کند (5). یک درخت تصمیم گیری یک مدل طبقه‌بندی مناسب با استفاده از مجموعه آماده داده‌ها می‌باشد (13).

5- ارزیابی عملکرد مدل‌ها

ارزیابی مدل‌ها به منظور تعیین دقیق‌تری و مدل‌ها و بررسی میزان نزدیکی بودن خروجی به مقادیر واقعی ارائه‌گیرد مورد استفاده قرار می‌گیرد. در این مطالعه از معاین‌های همبستگی و ضریب تبیین و میانگین مربعات خطای استفاده شد.

\[R = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}} \]

\[R^2 = \frac{\sum_{i=1}^{n} (x_i - \hat{x}) (y_i - \hat{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \hat{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \hat{y})^2}} \]

\[RMSE = \sqrt{\frac{\sum_{i=1}^{n} (X_{\text{obs},i} - X_{\text{model},i})^2}{n}} \]

که در این معادلات \(p_1 \) مقادیر مشاهده‌ای را داده‌های پیشینی شده، \(\beta \) میانگین داده‌های پیش‌بینی شده، \(\bar{o} \) میانگین داده‌های مشاهده‌ای شده و \(n \) تعداد داده‌ها می‌باشد.

6- وزن‌دهی عامل‌ها و شاخص‌ها

هموار در مدل‌سازی تخم‌منگیری و پراکنده‌ای ورودی‌های تأثیر بخشی بر روی خروجی مدل بوده‌اند و خروجی که برخی از پردازش‌ها در داده‌های پیش‌بینی شده، تأثیرات بیشتری بر روی خروجی مدل و نتیجه‌گیری به منظور تبیین اثر و هم‌اوقات با پراکنده‌ای ورودی و جهت در داده‌گویی داده‌آمیزی است. روش‌های مختلفی بر منظور تعیین نتیجه و هم‌اوقات با پراکنده‌ای ورودی جهت در این مطالعه آنالیز حساسیت و اکثروپرهای وزن‌دهی در این مطالعه به منظور وزن‌دهی از الگوریتم میانگین پراکنده‌ای استفاده شده که این الگوریتم ضریب بردار اونال یک مانند بردار پیشبانی خطی را به منبع وزن ویژگی تعیین می‌کند (34).

2- Support Vector Machine

1- M5 rules
نتایج
بررسی وضعیت خلاصه آماری داده‌های خاک که در منطقه نمونه‌برداری پوشش گیاهی استخراج شده، نشان داد که برای پس از اجرای مدل‌های تحلیل آماری مورد استفاده مشابه است.

جدول 1: وضعیت خلاصه آماری پارامترهای خاک

| پارامتر | حداکثر | حداقل | میانگین | هیت‌سکریت
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>گذشته‌ی الکتریکی</td>
<td>184.1</td>
<td>8.9</td>
<td>76.1</td>
<td>1</td>
</tr>
<tr>
<td>pH</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>(mg/kg)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
</tr>
</tbody>
</table>
بحث و نتیجه‌گیری
با توجه به نقش اساسی گیاهان در تعادل اکوسیستم‌ها، ضرورت شناخت روابط بین گیاهان و عوامل محیطی جهت حفظ ثبات و پایداری آن‌ها امروز اجتناب نابی‌ای است. گیاهان براساس ویژگی‌ها و خصوصیات رویش‌گاهی، نیازهای زیست‌بومی و دانه برخی از خاک‌ها با روش‌های مختلفی خاک رابطی دارند. فاکتورهای خاکی هم به‌صورت مستقل و هم غیرمستقل، به‌شکلی تأثیر را نسبت به سایر عوامل بر روی پوشش گیاهی دارند. گونه‌های مختلف گیاهی ارتباط یکسانی با عوامل و ویژگی‌های خاکی ندارند؛ به‌طوری که در برخی از این گونه‌ها ارتباط قوی و در برخی دیگر ارتباط ضعیفی با بازارهای خاکی دیده می‌شود (4). به طور مثال اکبری و همکاران (۲۰۱۳) در پژوهش خود میزان درصد رس و هدایت الکتریکی را از...
اتم‌خربی بر ساختمان، تهیه‌پذیری خاک گذاشته و همچنین غلظت بالای آن باعث نرخ سرمای جیوهان می‌شد که شرایط را برای استقرار پوشش گیاهی می‌داد. می‌تواند بررسی‌گر (48) همچنین در مناطق مختلف فرات‌های متفاوتی از خود نشان دهد. بهطوری که در مطالعه مکان و همکاران (2011، زالر چاوهکی و همکاران (2014) کارتون و همکاران (1999) نتایج برتی شکه اصلی مصنوعی را نسبت به سایر مدل‌ها به همراه داشته است. در این مطالعه از پارامترهای خاک به عنوان ورودی مدل به منظور افزایش دقت گیورتبهای بازگردی مالی در پیش‌بینی درصد پوشش‌های ایجاد شده نتایج حاصل از این مطالعه به نظر داد که گیورتبهای می‌تواند کمک بیشتری در برآورد درصد پوشش‌های گیاهی باشد به جای اینکه درصد پوشش‌های ایجاد شده با دقت بالاتری در برآورد درصد پوشش نسبت به همان جمع‌بندی در بیشتر بود. بنابراین می‌توان گفت این گیورتبه‌ها با توجه به داشتن ساختار غیرپیشروی‌تر قوت ارایب مالی به جهت ایجاد مدل‌های احتمال‌گیرانه جامعی از مسایل دیگر واقعی می‌باشد و این مدل درصد پوشش را با دقت بالاتری برآورد می‌نماید.

آنچه در مطالعات درصد پوششی اهمیت دارد تعیین پارامترهای مؤثرتر جهت حجم داده و سادسازی. گیورتبه‌ها در مطالعات آن‌شناسی می‌باشد. این نکته دچار وسیله پارامترهای در یافتن پیش‌بینی از گیورتبه‌های میانه سادسازی اطلاعات نماید. با توجه به استفاده موجود با منابع مختلف از پارامترهای خاکی در منطقه که از درصد پوشش‌های متفاوتی برخوردی اخلاق‌های مقاومه دیده شده است. بعضی از این پارامترها در منطقه مختلف اختلاف نابینایی در بعضی از پارامترها در منطقه با هم اختلاف نامحدود دارد. نتایج زنده از پارامترهای نشان داد که از میان پارامترهای خاکی بیشترین تأثیر را در برآورد پوشش‌های گیاهی دارد دلیل این اختلاف معینی دارد. درصد پوشش‌های متفاوتی می‌باشد. بیشترین سیستم به منطقه تحقیقات شوری مشاهده شده است که پوشش‌های گیاهی در این منطقه صفر می‌باشد دلیل این امر است که‌ه‌چ به بیان، در درصد شاخص خاک افزایش یابد.
References

23. Khaleghpour, A., A. Shahriari, Z. Khodangi Barani & M. Rigi, 2014. Relationship between vegetation characteristics of different species of Artemisia and some physical and chemical properties of soil in Taftan rangelands. Ministry of Science, Research and Technology- Zabol University- Faculty of Natural Resources. (In Persian)

