اثر آتش‌سوزی و محصولات آن بر شکل‌های زیستی و کلاس‌های خوش‌خوراکی بانک بذر خاک (مطالعه موردی: مرتع نیمه استتیپ کرنسک، چهارمحال و بختیاری)

سیتا نیپ‌زاده ۱، علی اصغر نیقوی برق ۲ و پژمان طهماسبی ۳

تاریخ دریافت: ۱۳۹۷/۱۱/۲۲ - تاریخ پذیرش: ۱۳۹۸/۱/۷

چکیده

مطالعه حاضر با هدف بررسی و مقایسه اثرات آتش‌سوزی و محصولات آن بر تغییر شکل‌های زیستی و کلاس‌های خوش‌خوراکی به صورت همزمان در پوشش گیاهی و بانک بذر خاک در مرتع نیمه استتیپ کرنسک در استان چهارمحال و بختیاری انجام شد. نمونه‌برداری از پوشش گیاهی و بانک بذر خاک به روش تصادفی طبق‌بندی شده و در ۲ نمونه با سایه‌گیری آتش‌سوزی یکسانه‌ای انجام گرفت. همچنین، در بخشی از منطقه که در جنگل سال‌ایل آتش‌سوزی در آن رخ نداده بود، نمونه‌گیری از بانک بذر خاک جهت اعمال تیمارهای محصولات آتش‌سوزی است. در مطالعه تیمارهای نیرویی چهار محصولات آتش بر آنها اعمال شدند. نتایج نشان داد ترکیب‌های بذر خاک و کامفیت‌ها در پوشش سطحی فراوانی تین شکل زیستی را تشكیل دادند. درصد فراوانی نسبی کلاس خوش‌خوراکی III در اثر آتش‌سوزی زیاد دارای بالاترین درصد بذر خاک داشت. اما آتش‌سوزی در پوشش سطحی باعث کاهش درصد فراوانی کلاس خوش‌خوراکی III شد. در بین تیمارهای مورد بررسی تیمار حرارت ۷۰ درجه سانتی‌گراد در کلاس‌های خوش‌خوراکی III و II نسبت به تیمار شاهد گردید. بنابراین، می‌توان نتیجه گرفت که با نوگرده به اثرات آتش‌سوزی و تغییر در دما بذر، پس از آن، بانک بذر خاک منبی کاملی برای احیا و همچنین افزایش تولید گونه‌های خوش‌خوراک پس از آتش‌سوزی نمی‌باشد.

واژه‌های کلیدی: احیا مرتع، زاگرس مرکزی، محصولات آتش، پوشش گیاهی، تراکم.

1- دانش‌آموخته کارشناسی ارشد مرتعداری، گروه مرتعداری، دانشکده منابع طبیعی و علوم زمین، دانشگاه شهید ظهیری، شیراز، ایران.
2- استادیار گروه مرتعداری، دانشکده منابع طبیعی و علوم زمین، دانشگاه شهید ظهیری، شیراز، ایران.
3- aa.naghipour@sku.ac.ir نویسنده مسئول
4- دانشیار گروه مرتعداری، دانشکده منابع طبیعی و علوم زمین، دانشگاه شهید ظهیری، شیراز، ایران.
شیمیایی و فیزیکی در محیط بذر باعث تغییر پاسخ‌های جوانه‌ای گونه‌های گیاهی می‌شود (25) و با این حال افزایش و در دسترس بودن مواد غذایی خاص بلافاصله بعد از آتش‌سوزی، امکان رشد بذر جوانه‌زده با ذخایر غذایی محدود را کند (13).

مقدمه

آشتشگی‌ها از عمدتی ترین علل تغییرات در ساختار اکوسیستم‌ها حصول می‌شود. آتش و چرای دام و آتش‌سوزی مؤثر بر مراتع در سرتاسر جهان هستند (128). هر دو این آشتشگی‌ها به مقادیر زیادی مستقیماً و تاثیر خوراکی و ساختار گیاهان تأثیر می‌گذارند (12). چرا به طور عمدی گونه‌های خشک و غیرخشک خوراک اثر می‌گذارد (3). احیاء گیاهی بعد از آتش‌سوزی به پیش گرفتن گیاه‌ها روز از روز به گونه‌های خشک خوراک اثر می‌گذارد (128). احیاء گیاهی بعد از آتش‌سوزی به پیش گرفتن گیاه‌ها روز از روز به گونه‌های خشک خوراک اثر می‌گذارد (128). با این حال، نشانه‌های گیاه‌های بی‌دردسانی دارد (78)، یکی از آتش‌سوزی‌ها به دسته دیگری از گیاهان سایر مناطق هستند. افزایش مقدار پروتئین، ناهار، سفت و انرژی قالی‌گاه گیاه‌گیان در مناطق سوخته‌شده بسیار افزایش یافت. گیاهان در حال سوخته‌شدن، حاصل رویه‌پر شده‌اند و به دنبال آن سپس هضم علو و جزبال اکثر آن‌ها نیز افزایش می‌یابد و (15).

با توجه به شاخص‌های فوق و آتش‌سوزی‌های مکرر در استان‌های جنوبی أیران، بعت این‌ها حاصل بررسی توسط دامداران با هدف تغییر بوشی گیاهی و دسترسی بیشتر دامدار به شرایط خشک خوراک صورت می‌گیرد، چنین سوال اساسی مطرح می‌شود که اکثراً آیا آتش‌سوزی باعث تغییر در شکل‌های زیستی و فرآیندهای کلاس‌های خشک خوراکی در بذر خشک یا بوشی گیاهی می‌گردد؟ دو از آیا یا آیا بذر خشک باعث بوشی گیاهی می‌گردد؟ دو از آیا یا آیا بذر خشک یا بوشی گیاهی می‌گردد؟ دو از آیا یا آیا بذر خشک باعث بوشی گیاهی می‌گردد؟ چرا رویه‌‌پر شده‌اند و به دنبال آن سپس هضم علو و جزبال اکثر آن‌ها نیز افزایش می‌یابد و (15).
کدام یک از محصولات آتش (حرارت، دود و خاکستر) بیشترین تأثیر بر کلاسهای خوشخوراکی را دارد؟ به همین منظور مطالعه حاضر با هدف بررسی و مقایسه تأثیرات آتشسوزی و محصولات آن بر تغییر شکل‌های زیستی و کلاسهای خوشخوراکی به صورت همزمان در بوشگاه گیاهی و بانک برداشته در مناطق نیم‌مادستی ایران انجام گرفت.

مواد و روش‌ها

منطقه مورد مطالعه:

مراجع نیم‌مادستی کرنسک با وسعت معادل ۶۰۰ هکتار بین مختصات جغرافیایی ۱۹°۴۲ دقیقه شمالی و ۵۰°۲۰ دقیقه شرقی و در استان چهارمحال و بختیاری قرار گرفته است. ارتفاع متوسط این مراتع ۲۶۰۰ متر از سطح دریا و در میانگین بارندگی ۴۰۵ میلی‌متر و در ماه‌های ۱۲ و ۱۳ و ۱۴۰۷ و ۱۴۰۸ نیز هم‌زمان حادثه آتشسوزی برخوردار بود.

Astragalus Astragalus verus DC. ex Bunge
Bromus tomentellus Boiss. و susianus Boiss.
همچنین بوشگاه گیاهی غالب در مناطق آتش‌سوزی به
Taeniatherum crinitum (Schreb.) ترتیب شامل ۳ گونه
Agropyron و Bromus tomentellus Boiss. Nevski
Bromus intermedium P.Beauv.

شکل ۱: محدوده مراتع کرنسک، موقعیت مکان‌های نمونه‌برداری بوشگاه گیاهی و بانک برداشته در این منطقه.
نمونه‌برداری پوشش گیاهی

پس از نشانی مقدماتی و تعمین حدود سایت‌های مرتبط مرتعی مورد بررسی با استفاده از تماشای ماهواره‌ای و پیمایش صحرایی، برای مطالعه پراسته‌تری پوشش گیاهی منطقه آتش‌سوزی یک‌ساله و منطقه شاهد، شامل تنکیب گونه‌ای و درک پوشش از نمونه‌برداری تصادفی طبقه‌بندی شده استفاده کردیم (جدول 1). در هر سایت مربعی مستشرک شد که 10 پلاس در منطقه حیرت و 10 پلاس در منطقه شاهد اجرا گردید. در 3 سایت مربعی در مجموع 60 پلاس از نمونه‌برداری شد. در هر پلاس، از شاخص‌سنج سه‌سرعت به طور عمق 10 سانتی‌متر تا 5 بار در داخل هر پلاس صورت گرفت که مقدار حاک برداشتی از هر پلاس 50 سانتی‌متر مکعب بود.

در ادامه، 50 پلاس دیگر نیز در بخشی از منطقه که در جنگ سال اخیر آتش‌سوزی در آن رخ نداده بود برای انجام نمونه‌برداری از بک و عامل تیماره‌ای مورد تحقیق قرار گرفت. مجموعه‌ای از آنها انتخاب شد. نمونه‌های خاک از پلاس‌های 4 متر مربعی و با 5 تکرار توسط سیلر برداشت گردید. در نهایت 5 تکرار برداشت شده از هر پلاس به مخلوط و در کیسه‌های پلاستیکی جایگذاری شده و در کسه‌های خاک با برجسته گجری جهت انجام تیمارها و کشتن در گلخانه منطقه گردید.

جدول 1: مشخصات مربوط به محل‌های مرتعی نمونه‌برداری شده

<table>
<thead>
<tr>
<th>شماره سایت</th>
<th>نوع سایت</th>
<th>طول جغرافیایی (UTM)</th>
<th>عرض جغرافیایی (UTM)</th>
<th>ارتفاع از سطح دریا</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2359511</td>
<td>392913</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2359511</td>
<td>392912</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2359511</td>
<td>392913</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2359511</td>
<td>392912</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>2359511</td>
<td>392913</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>2359511</td>
<td>392912</td>
<td></td>
</tr>
</tbody>
</table>

از کشت و عملیات تیماره‌ای مختلف آش برو این نمونه‌ها در محيط گلخانه قرار داده شدند. برای این کار، تعادل 5 سفید به ارتفاع 5 و قطر ده‌سمی در 8 سانتی‌متر بارش شد. ابتدا تعداد 20 سینی جهت مقایسه باک در خاک مناطق سوخته‌شده و مناطق شاهد آماده گردید. نمونه‌های باک در خاک مناطق سوخته و آب‌زده گردید. نمونه‌های باک در خاک مناطق سوخته و

انجام تیمارها و کشتن گلخانه‌ای

تکرارهای حاک برداشت شده از هر پلاس به مخلوط گردید و جهت حذف ریشه و سستنی‌ها، از اکثر 5 میلی‌متر گیاوانه و به دستور داده شد. سپس این نمونه‌ها بر اساس طرح کاملی تصادفی در سینی‌های کشت پلاستیکی قرار گرفتند و بعد
تجزیه و تحلیل آماری

گونه‌های موجود در بوتاش سطح رزم و باکت بذر خاک به سه کلاس خوشه‌خوارکان 1 (گیاهان سبزی خوشه‌خوارکان) II (گیاهان با خوشه‌خوارکان متوسط و کم) و III (گیاهان با خوشه‌خوارکان خیلی کم و غیر خوشه‌خوارکان) تقسیم شدند (24). در مطالعه حاضر شکل ریزی گیاهان نیز با استفاده از سیستم رانک‌گر به 4 طبقه اصلی تقسیم شدند که به ترتیب عبارتند از: توزیع، کامفیت، همی کامفیت و توزیع (27). جهت آنالیز آماری، ابتدا نرم‌افزار داده‌ها به سیستم آزمون کولموگروف اسمیرنوف (19) و همگین بون و یاسنی‌ها توسط آزمون چیبو (18) مورد بررسی قرار گرفت. جهت تجزیه و تحلیل داده‌های مربوط به باکت بذر خاک مناطق سوخته‌شد و بوتاش گیاه (شاخه و انتهای) از آزمون 1 خفی انتقال داده شد. داده‌های مربوط به تیمار‌های عمل شده بر باکت بذر خوشه‌خوارکان بوت و جهت کلاس‌بندی مقدار میانگین‌ها از آزمون کروسکال-ویلیس مورد آنالیز قرار گرفتند. همچنین برای مقایسه درصد فراوانی شکل‌های زیستی و کلاس‌های خوشه‌خوارکان مربوط به باکت بذر خاک و بوتاش گیاهی مناطق سوخته‌شد و شامل از آنالیز تجزیه واریانس یک طرفه و آزمون دانک استفاده گردید. اکلیپس محاسبات آماری در نرم‌افزار 23 و رسم نمودارها در SPSS محیط 2016 انجام شد.

نتایج

انر موارد آتی بذر کلاس‌های خوشه‌خوارکان در باکت بذر خاک

در مجموع، بذر 21 گونه از 15 تبر گیاهی در نمونه‌های باکت بذر خاک تحت تأثیر تیمار‌های محصولات Poaceae کشت شدند. نتایج در لیستهای با نام‌های Brassicaceae و با بیشترین تعداد گونه در هر کلاس بذر Brachyphyllum گروه (28) درصد از گونه‌های جوان‌زاده مربوط به گیاهان با خوشه‌خوارکان I و II بود. نتایج حاصل از آزمون کروسکال و الیس نشان داد که تیمار حرارت 80 درجه سانتی‌گراد باعث افزایش معنی‌دار تراکم جوان‌زاده و در کلاس‌های خوشه‌خوارکان I و II نسبت به تیمار شاهد شده‌است.

جدول اعمال تیمارهای محصولات آتی داده‌های نمودار 25 سینی انتخاب گردید. در هر سینی، نمونه‌های تیمار با روی یا نه تاکی از سه اشکال نیاز و با خاک زراعی استریل (ارتفاعات 3 سانتی‌متر) به گونه‌های خوشه‌خوارکان که شکل ریزی گیاهان نیز با استفاده از سیستم رانک‌گر به 4 طبقه اصلی تقسیم شدند که به ترتیب عبارتند از: توزیع، کامفیت، همی کامفیت و توزیع (27). جهت آنالیز آماری، ابتدا نرم‌افزار داده‌ها به سیستم آزمون کولموگروف اسمیرنوف (19) و همگین بون و یاسنی‌ها توسط آزمون چیبو (18) مورد بررسی قرار گرفت. جهت تجزیه و تحلیل داده‌های مربوط به تیمار‌های عمل شده بر باکت بذر خاک مناطق سوخته‌شد و بوتاش گیاه (شاخه و انتهای) از آزمون 1 خفی انتقال داده شد. داده‌های مربوط به تیمار‌های عمل شده بر باکت بذر خوشه‌خوارکان بوت و جهت کلاس‌بندی مقدار میانگین‌ها از آزمون کروسکال-ویلیس مورد آنالیز قرار گرفتند. همچنین برای مقایسه درصد فراوانی شکل‌های زیستی و کلاس‌های خوشه‌خوارکان مربوط به باکت بذر خاک و بوتاش گیاهی مناطق سوخته‌شد و شامل از آنالیز تجزیه واریانس یک طرفه و آزمون دانک استفاده گردید. اکلیپس محاسبات آماری در نرم‌افزار 23 و رسم نمودارها در SPSS محیط 2016 انجام شد.

نتایج

انر موارد آتی بذر کلاس‌های خوشه‌خوارکان در باکت بذر خاک

در مجموع، بذر 21 گونه از 15 تبر گیاهی در نمونه‌های باکت بذر خاک تحت تأثیر تیمار‌های محصولات Poaceae کشت شدند. نتایج در لیستهای با نام‌های Brassicaceae و با بیشترین تعداد گونه در هر کلاس بذر Brachyphyllum گروه (28) درصد از گونه‌های جوان‌زاده مربوط به گیاهان با خوشه‌خوارکان I و II بود. نتایج حاصل از آزمون کروسکال و الیس نشان داد که تیمار حرارت 80 درجه سانتی‌گراد باعث افزایش معنی‌دار تراکم جوان‌زاده و در کلاس‌های خوشه‌خوارکان I و II نسبت به تیمار شاهد شده‌است.

شده‌است تا کلیه بذر در معرض هوا و نور کافی قرار گرفته و سانس جوان‌زادنی بذر در هداکتر برسد (37). همچنین برای هر تیمار 5 تکرار و تیمارهای مورد استفاده شامل: حرارت، دود و خاکستر بود. حرارت شامل دو تیمار 60 و 80 درجه سانتی‌گراد بوده که به ترتیب دادن نمونه‌ها در دستگاه آن با مدت 5 دقیقه انجام شد. برای اعمال تیمار دود ابتدا اقدام به تولید دود استفاده نشده بود. تیمار حرارت از گونه‌های خشک گیاهی جمع آوری شده از منطقه گردید. نمونه‌های باکت بذر سپس به کشت در سپهری های مختوم داخل اتفاقی دستگاه قرار گرفته و بدون دود مدت 3 دقیقه بر آنها عمل شد. جهت تیمار خاکستر نبود. باکتری حاصل از سوزاندن گیاهان گالب منطقه را جمع آوری نموده و لایه‌ای به ضخامت 1 میلی‌متر بر روی سطح خاک نمونه‌ها قرار داده شد.

بعد از انجام این مرحله نمونه‌ها در گل‌اندازه قرار داده شد. رطوبت مورد نیاز برای گل‌اندازی به صورت غرفی در در تأمین گردید. نبت و شمارش نمونه‌های یافته در سری اول به سه بند تاکی که دیگر بذر جدیدی سیز نشته‌های تیمار گردید. در نهایت بعد از بینهایت بذر گیاهی سیز نشته که دوره ۲ هفته تیمار شکل اعمال گردید و سپس خراشده سطح خاک انجام شد و آب‌بری و شمارش آگذار گردید (28).

نویسنده گیاهی گل‌زدن یا توجه به میزان مورد شناسایی قرار می‌گرفت و در صورت عدم شناسایی گونه گیاهی، گل‌ن بوی یا تاکی که قابل شناسایی شود، در داخل سینی‌های کشت نگهداری شد. بعد از اتمام شمارش نمونه‌های گل‌زدن، برای تعیین میزان بذر در هر سینی تراکم نبوده در داخل هر سینی برحسب تعداد در متر مربع محاسبه گردید.
اثر آتش‌سوزی و محصولات آن بر شکل‌های زیستی و کلاس‌های خشخوراکی بانک بذر خاک

گردد. تراکم جوامعی کلاس خشخوراکی I تحت تأثیر محصولات آنی، تفاوت معنی‌داری با تیمار شاهد نداشت (شکل 3).

از نظر درصد فراوانی نیز، درصد فراوانی گیاهان با کلاس خشخوراکی III در تیمار حرارتی 80°C نسبت به تیمار شاهد افزایش یافته‌کرد و در مقابل این تیمار باعث

شکل 2: مقادیر تراکم هریک از کلاس‌های خشخوراکی در تیمارهای مورد مطالعه از محصولات آنی

شکل 3: درصد فراوانی هریک از کلاس‌های خشخوراکی در تیمارهای مورد مطالعه از محصولات آنی

اثر آتش‌سوزی بر شکل‌های زیستی و کلاس‌های خشخوراکی در بذر خاک (آتش‌سوزی و شاهد)

به طور کلی، بذر 26 گونه از 9 تیره گیاهی در بذر بذر خاک مربوط به سایت‌های آتش‌سوزی و شاهد در گلخانه جوانه زد. تیره‌های Poaceae و Brassicaceae تعداد گونه در کل بذر خاک ظاهر شدند. شکل زیستی کاملاً در بذر خاک دیده می‌شد. نتایج از سه گونه یافته

نشان دهنده کاهش معنی‌داری در شکل زیستی همی‌کربپیتکت در اثر آتش‌سوزی نسبت به مناطق شاهد می‌باشد.
نشریه علمی مرتع، سال جهرمده/ شماره اول/ بهار 1399

شکل ۴: مقدار تراکم هر یک از شکل‌های زیستی بانک بذر خاک در سایت‌های مورد مطالعه (آتش‌سوئی و شاهد)

شکل ۵: مقدار تراکم هر یک از کلاس‌های خوش‌خوراکی بانک بذر خاک در سایت‌های مورد مطالعه (آتش‌سوئی و شاهد)

اثر آتش‌سوئی بر شکل‌های زیستی و کلاس‌های خوش‌خوراکی در پوسته گیاهی سطح زمین

در مجموع، ۷۵ گونه گیاهی از ۱۵ تیره در پوسته گیاهی (آتش‌سوئی و شاهد) ثبت گردید. تیره‌هایی با وجود آتش‌سوئی و Asteraeae و Poaceae گیاهان در پوسته گیاهی برده‌دار به بیشترین گونه‌گونه گیاهان در پوسته گیاهی ثبت گردیدند.

نتایج آزمون ۴ جفتی نشان داد آتش‌سوئی یکسان باعث کاهش معنی‌دار درصد پوسته گیاهان کنفیت گردید.
مقایسه شکل‌های زیستی بانک بذر خاک و پوشش سطحی
(آتش‌سوزی و شاهد)

نتایج آنالیز واریانس یکطرفه و آزمون دانکن نشان داد که آناتورمی بذر شکل‌های زیستی کامفیت، همی‌کرپتوفیت و تروپیت در بانک بذر خاک و پوشش سطحی اثر معنی‌دار دارند. آناتورمی بذر افزایش معنی‌دار درصد فروآیانی شکل زیستی تروپیت و شکل بذر خاک 91/7 (36/7 درصد) و پوشش گیاهی (36/7 درصد) ۲۳/۶ درصد) بود. همچنین آناتورمی بذر کاهش معنی‌دار درصد فراوانی شکل

زیستی کامفیت از ۴۵/۶ به ۱۰/۵ درصد در پوشش سطح زمین گردید. شکل زیستی همی‌کرپتوفیت (۵۱/۱۳ درصد) در پوشش گیاهی سطح زمین به صورت معنی‌دار نسبت به سایت‌های شاهد پوشش گیاهی و بانک بذر خاک در اثر آناتورمی افزایش یافت و آناتورمی بانک بذر خاک باعث کاهش معنی‌دار درصد فراوانی شکل زیستی همی‌کرپتوفیت نسبت به سایت شاهد بانک بذر خاک گردید. اثر آناتورمی بذر شکل زیستی بهینه در بانک بذر خاک و پوشش گیاهی سطح زمین معنی‌دار نبود. (شکل ۸).

شکل ۶: درصد پوشش گیاهی هریک از شکل‌های زیستی در سایت‌های مورد مطالعه (آتش‌سوزی و شاهد)

شکل ۷: درصد پوشش گیاهی هریک از شکل‌های خوش‌خوراکی در سایت‌های مورد مطالعه (آتش‌سوزی و شاهد)
مقایسه کلاس‌های خوش‌خوراکی بانک، بذر خاک و بوشش سطحی (آتش‌سوزی و شاهد)

نتایج آنالیز واریانس یک طرفه و آزمون دانکش نشان داد که اثر آتش‌سوزی بر کلاس‌های خوش‌خوراکی در بذر خاک و بوشش گیاهی سطح زمین معنی‌دار می‌باشد.

درصد فراوانی کلاس‌های خوراکی III (10 درصد) در بذر خاک و استحکام معنی‌داری پیدا کرد. همچنین کلاس‌های خوراکی II (9/7 درصد) در بوشش گیاهی در بذر آتش‌سوزی معنی‌داری نسبت به بذر خاک افزایش معنی‌داری داشت (شکل 9).

اما آتش‌سوزی در بوشش سطحی باعث کاهش معنی‌داری

بحث و نتیجه‌گیری

در مطالعه حاضر، تأثیر آتش‌سوزی و محصولات آن بر شکل‌های زیستی و کلاس‌های خوش‌خوراکی بانک، بذر خاک و بوشش گیاهی سطح زمین در مناطق مختلف
گونه‌ها (9) در بانک بذر خاک سایت‌های مورد مطالعه مشاهده نشد. خصیب بودن، قرار گرفتن جوانه روی‌پوش در انتهای ساقه و یا در انتهای ساقه در کاسه‌ای هر افکت می‌شود که در برای آنت‌سوری، بذر خاک مربوط به تیمارهای آنت و سایت‌های مورد مطالعه آنت‌سوری و شاهد دیده شد. گونه‌هایی در مراحل وحش متغیر در نمونه‌برداری که می‌تواند بذر به باد از در خاک تشکیل دهد و در صورت نفوذ شرایط محیطی مناسب برای جوانه‌ها سالم‌ها در زیر خاک زده بمانند، در نتیجه در پوشش سطح زمین مشاهده نمی‌شود (3). آنت‌سوری با خنثی کردن (نمونه سطحی) موجب کاهش قابل بین گونه‌ها خواهد شد. همچنین نمایان محرز محدودیت آنت بر روی بذر موجود در بانک بذر خاک شکست خواهد آورد. بسته حضور گونه‌های جدید در پوشش روی زمینی می‌شود. این امر نتیجه زمانی اتفاق می‌افتد که این قابل کاهش گیاهان دارای بذر برش از در ناحیه باند. همچنین در پوشش مواج و خوش‌پوش در بانک بذر خاک تعداد بذر گیاهان جنگلی (بکسال) و غیر خوش‌پوش در ذخیره بانک بذر خاک افزایش پیدا می‌کند (10). کوچک بودن اندازه بذر پوشش معنی‌دار آتش‌زدایی که بذر شرایط مراحل مسیر به شکل قابل توجه در بذر بسیار فراوان و کوچک بودن اندازه بذر می‌تواند با خاک کاهش یابد، و در شرایط متغیر، ستون‌های خاکی که از خط نفوذ کننده (3) به همین دلیل می‌تواند در در آنت‌سوری دارای جوانه‌های حداکثر باشد و در صورت درصد فراوانی در بازی سپاسی به شکل سایت‌های کمیتی‌پوششی و کلاس خوش‌خوراکی I به صورت معنی‌داری در بانک بذر خاک کاهش یابد. در پوشش گیاهان سطح زمین سایت‌هی‌پوششی، به دلیل قرار گرفتن جوانه روی ساقه و یا در باد، نسبت به سایت‌های نسبی به گروه آنت‌سوری دارای جوانه، سازگاری بیشتری نسبت به آنت‌سوری داده‌ها که کمیتی‌پوششی به خاطر قاده بودن به انجام نمی‌رسد. به دنبال از طریق پیش‌بینی و قرار داشتن جوانه‌های مرطوبی در قاعده ساقه، قدرت زندگی‌های آنت‌سوری با هدف برند. در صورت، گیاهان سایت‌هایی که به دلیل بذر کمیتی‌پوششی به شکل سایت‌های مورد نیاز دارای نگهبانی و درصد فراوانی، پوشش گیاهانی که به شکل سایت‌های به صورت معنی‌داری زیاد می‌شود (14) و همچنین به دلیل بذر بذرهای کم سالم‌ها (20) و همچنین به‌دلیل بازی سرما برای شبکه خاکی بذر گونه‌های خوش‌خوراکی از تیمارهای محصولات آنت مانند حذف یا دوست استفاده کرد (21).
حال سوال این است، با توجه به نتایج فوق، آیا می‌توان از آتش‌سوزی به عنوان عاملی برای بهبود ترکیب گونه‌های موجود در کلاس گیاهان خوش‌خوراک انتقاد کرد؟ گرچه در بسیاری از موارد آتش‌سوزی با توجه به افزایش شیب‌های بدر، شاخک با پوشش گیاهی ظاهر گونه‌های دیده به افزایش تند در مراتع کمک می‌نماید. اما به طور کلی برآشکنت تحقیق حاضر، آتش‌سوزی باعث کاهش درصد پوشش گیاهی کلاس گیاهان خوش‌خوراک III می‌گردد ولی درصد گونه‌های کلاس III بهتر شده و بشرح داشته دیده که گیاهان با خوش‌خوراک کم در بانک بذر باشد و پوشش گیاهی سطح زمین افزایش می‌یابد. همچنین آتش‌سوزی باعث کاهش بذر گونه‌های خوش‌خوراک کلاس 1 در بانک بذر شاخ می‌گردد. با این

References


27. Raunkiaer, C., 1934. The life forms of plants and statistical plant geography; being the collected papers of C. Raunkiaer.

28. Raunkiaer, C., 1934. The life forms of plants and statistical plant geography; being the collected papers of C. Raunkiaer.


