ارتباط برخی عوامل محیطی و حضور گونه‌های دارویی مرتع خوش بیلاغ استان گلستان

پاسخنگی کیاسی ۱، محمدرحمفروز ۲، مُسیت زهره مردنیلی ۲ و حمید نیک‌نیا ۲

تاریخ دریافت: ۱۳۹۸/۰۶/۱۳ - تاریخ صدور: ۱۳۹۸/۰۹/۱۱

چکیده

آگاهی دقیق از روابط بین پوشش گیاهی و عوامل محیطی از موارد لازم برای مدیریت اکوسیستم‌های مرتعی است. تحقیق حاضر به منظور بررسی تأثیر برخی عوامل خاکی و پسماندی بر پراکنش میوه‌گیاهان دارویی مرتع خوش بیلاغ استان گلستان انجام شد. در منطقه مورد مطالعه به منظور تیپ پاترول‌های گیاهی از قبیل تراکم، فراوانی و درصد تاج پوششی، تعداد موجودی از پوشش گیاهی به روش تصادفی- سیستم‌بندی از طریق داده‌گزاری در طول ترانسکت در هر تپه انجام شد. ارتفاع از سطح دریا، جهت جغرافیایی و میزان شیب به مراتب گاهان گردید و خصوصیات زیست‌کریاتی و شیمیایی خاک اندازه‌گیری شد. به منظور م(dirname)عوم بررسی عوامل محیطی در پراکنش گیاهان دارویی، از آنالیز تطبیقی قوس گیری شده (DCA) و آنالیز تطبیقی معرقی (CCA) در محیط نرم‌افزار Statgraphics استفاده شد. نتایج نشان داد ۵۳ درصد از تغییرات توسط محورهای اول، دوم و سوم قابل توجهی محور جهت جغرافیایی، ماده آلی و میزان فسفر به ترتیب با میزان همبستگی ۰۲۴۷، ۰۲۴۷ و ۰۴۷۰ در محور اول، رنگی و درصد رنگی و درصد رس به ترتیب با میزان همبستگی ۰۴۷۰، ۰۵۸۸ و ۰۵۸۸ در محور دوم رنگی و عامل همبستگی با اثر عوامل گونه‌های دارویی مرتع خوش بیلاغ معرفی شدند. با توجه به اینکه عوامل پستی و بلندی و درصد موجودی مهم خاک (ماده آلی و درصد رنگی) بر تغییرات پراکنش گیاهان دارویی اهمیت بیشتری داشتهند به نظر مرسید در نظر گرفته این عوامل اکثر در اصلاح و ایجاد مرتع با محوریت گیاهان دارویی نیاز به افزایش تولید و بهره‌وری گیاهان مذکور در رویشگاه مورد بررسی را نیازمند می‌دانید.

واژه‌های کلیدی: تحلیل تطبیقی متعاقب، رنگی، گیاهان دارویی، مرتع خوش بیلاغ، استان گلستان

1 دانشجوی کارشناسی ارشد مرتعداری، گروه مرتعداری، دانشکده مرتع و ایبیژداری‌های دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.
2 استادیار گروه مرتعداری، دانشکده مرتع و ایبیژداری‌های دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.
3 نوبت‌نده مشاور: rfroozeh@gmail.com
4 دکتری مرتعداری، گروه مرتعداری، دانشکده مرتع و ایبیژداری‌های دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.
5 استادیار گروه مرتعداری، دانشکده مرتع و ایبیژداری‌های دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.
ارتباط برخی عوامل محیطی و حضور گونه‌های دارویی مرتع خوش بیلچاق ... مقدمه

شناخت ارتباط بین پوشش گیاهی و عوامل محیطی

از اهمیت بالایی برخوردار است و در مدیریت بهتر اکوسیستم مرتع تأثیرگذار می‌باشد (15). عوامل مؤثر بر پراکنش، رشد و استقرار گونه‌های گیاهی در یک اکوسیستم طبیعی، شامل پستی و بندله، اقلیم، نوع خاک و عوامل مدیریتی می‌باشند. این امر با توجه به نقش مهمی که گیاهان در تولید اکوسیستم ایفا می‌کنند و بهره‌گیری‌های مختلفی که بشر به طور مستقیم و غیر مستقیم از آن می‌نماید، شناخت روابط بین پوشش گیاهی و عوامل محیطی، ارتباط قابل توجهی بین پشتیبانی اقتصادی و حفظ ذخایر زننگی از نظر مدیریت توسه پایدار امری اجتناب‌ناپذیر است (7). گیاهان دارویی به صورت دسته‌ای، توسط دام‌گران سنگین و تجار مدیریتی دارویی مورد استفاده قرار می‌گیرند (10). طبق اطلاعات سازمان بهداشت جهانی، درصد از داروهای متدال، دارای منشا گیاهی می‌باشند و شناسایی اثرات آنتی‌بیوتیک 27 درصد از داروهای گیاهی که به شکل سنتی استفاده می‌شوند، به طور سنتی از قدیمی صورت گرفته است (6). اکوسیستم مرتع تحت تأثیر عوامل محیطی و روابطی بین گونه‌های است و وی با یک چند عامل محیطی پشتیبان اثر را در استقرار آنها دارند (11). با توجه به نقش مهم گیاهان دارویی در استفاده‌های مختلفی که انسان به طور مستقیم و غیرمستقیم از آنها نماید، شناخت ارتباط بین گیاهان و عوامل محیطی برای مدیریت و عواملی که این گونه‌ها با مناطق جدید، ارزیابی و مقایسه گونه‌های غیرمطابق در محیط متفاوت، چنگوکی پایخ گونه به تغییرات محیطی و در کل به پاپادی آنها ضرورت دارد (13). با توجه به پایداری فوق، هدف از انجام این بررسی شناسایی نیازهای بوم‌شناختی گونه‌های دارویی و شناخت

3. Garousi

1. Mirdeyliami
2. Pourbabaei
گیاهان دارویی مراتع، بررسی روابط بین عوامل محیطی و گونه‌ها جهت شناسایی خصوصیاتی و نیازهای اکولوژیکی آنها در جهت حفظ، ترمیم و مدیریت، ضروری خواهد بود. از طرفی با شناسایی و یکپارچه‌سازی مطالعات، عوامل محیطی مختصان می‌توان راه‌حل معقولی در زمینه آگاهی و توسعه مراتع ارائه داد. چون با شناخت عوامل محیطی معرف هر جامعه گیاهی می‌توان گونه‌های سازگار به شرایط محیطی را برای هر منطقه پیشنهاد کرد که مراتع خوش پیامدهای گیاهان به دلیل موقعیت ویژه از قبل برخورداری از مناطق کوهستانی و دشتی و نوع گونه‌های گیاهی منطقه‌ای ارزشمند محصول می‌شود و جهت جلوگیری از اکولوژیکی و استفاده گسترده مردم از گیاهان دارویی نشان‌دهنده لزوم تحقیقات در زمینه گیاهان دارویی و نیازهای بومشاختی این گیاهان است. از این رو با توجه به آنکه یکی از سباستی‌های اداره کل منابع طبیعی و آبخیزداری استان گلستان استفاده از گونه‌های گیاهی با ارتش‌های چندمنظوره (عکس‌های حفاظتی، دارویی و غیره) در طرح‌های چندمنظوره مرتبار است و سویی دیگر تاکنون چنین مطالعه‌ای در منطقه مذکور صورت نگرفته بود؛ لذا هدف از تحقیق حاضر شناسایی مهم‌ترین عوامل محیطی بر پاکش مهم‌ترین گونه‌های گیاهی دارویی مراتع خوش پیامدهای بوده و امید می‌رود تا در نظر گرفتن این عوامل در اصلاح و احیای مراتع

شکل 1: موقعیت منطقه مورد مطالعه در ایران و استان گلستان
شیب 60 درصد و متوسط ارتفاع 2000 متر است و عمداً در جهت جغرافیایی جنوب-شرق قرار گرفته است (جدول 1). به کمک دستگاه موقعیت گیری جهانی (GPS) ارتفاع از سطح دریا جهت جغرافیایی و میزان شیب در هر پلاک استخراج و تیپ شد. در امتیاد و تراسکت نمونه‌های کبود در مزرع 3 پلاک (آباده، وسط و انتهای هر تراسکت) و از عمق 3000 سانتیمتر برداشته گردید. در مرحله بعد با استفاده از نظارتکاران و منابع کتابخانه‌ای از تهیه‌گیری گیاهان منطقه، گیاهان دارویی، خانواده، قرم‌پری و تیپ بیولوژیک آنها مشخص شد (29). نمونه‌های خاک به آزمایشگاه منتقل شد و پس از ابعاد از الک دو مدل‌ترو، برخی ویژگی‌های خاک نظیر بافت خاک، هدهای کرتکی، اسیدیت، ماده‌آل، ارتفاع، وزن مخصوص ظاهری، رطوبت، کلسیم، نیتروژن، اکسید، فسفر و پاتامیس اندازه‌گیری شد. بافت خاک به روش هیدرومتری بالکاس (20) هدهای الکتریکی از طرف EC (مترا) (37)، اسیدیت با دستگاه pH (24) ماده آلی به روش وایکلرک (۳۲) از طریق چهار متره آلی، وزن مخصوص ظاهری به روش گلوجه و پارافین (۳۲)، درصد رطوبت به روش نیروی (31)، کلسیم، نیتروژن به روش تیتراسیون (۳۲)، اکسید به روش تیتراسیون (۳۲) فسفر به روش داولس (۳۲) پاتامیس با دستگاه فلمن/ فیمیتیو (17) اندازه‌گیری شد.

به منظور بررسی روابط بین عوامل محیطی و پراکنش گیاهان دارویی در مرتع خوش پیش از غروب هوا که بیشترین حضور را در پلاک‌ها داشتند، انتخاب شدند.

\[N = \left(\frac{CV}{E} \right)^2 \]

که در آن N تعداد پلات مورد نیاز، CV تغییرات و E میزان خطای است. تابع به رابطه 1 و با میزان خطای 5 درصد، تعداد پلات در هر تیپ مشخص شد. لازم به ذکر است تیپ‌ها با یکدیگر هم مرز بود ولی در دانه‌های مختلف نسبت به یکدیگر قرار دارند، در هر تیپ، در امتیاد و تراسکت 100 متری (با فاصله تقریبی 300 متر از یکدیگر) نمونه‌برداری به روش سیستم‌تکنیکی صادقی محور گرفته در امتیاد هر تراسکت پلاک‌ها در فاصله 10 متری از هم قرار داده شدند. در هر پلاک، اطلاعات مربوط به بست فلوشته، درصد تاج گیاه و تراکم گونه‌های گیاهی، نسبت گردنی با توجه به بررسی‌های انجام شده تیپ‌های بالغ موجود در تیپ 1 (Artemisia aucheri + Poa bulbosa) (Achichia aucheri + Stachys inflata + Artemisia aucheri) و تیپ 3 (Bromus tomentellus + Artemisia aucheri) گردید. بیشترین محصولات مورد مطالعه مربوط به تیپ 3 است که 12 درصد از آن دارای میزان شیب 24 درصد و متوسط ارتفاع 1700 متر بود و در جهت جغرافیایی جنوبی قرار دارد. کمترین میزان مورد مطالعه نیز مربوط به تیپ 2 است که 8 درصد محدوده مطالعه را به خود اختصاص داده است. این تیپ گیاه‌های دارویی متوسط

1- Global Positioning system
پاسخ بین تیپهای مختلف گیاهی اختلاف معنی‌دار در سطح اطمینان 95 درصد وجود داشت، در حالیکه بین سایر عوامل محیطی در تیپ گیاهی اختلاف معنی‌دار در سطح 95 درصد مشاهده نشد (جدول 2).

جدول 2: جدول تجزیه واریانس عوامل محیطی در تیپ گیاهی مختلف

<table>
<thead>
<tr>
<th>Sig</th>
<th>F</th>
<th>P</th>
<th>میانگین مرحلات</th>
<th>سنجش (R2)</th>
<th>مجموع مرحلات</th>
<th>عوامل</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>درجه آزادی</td>
<td></td>
<td></td>
<td>عوامل محیطی (gr/cm3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>عوامل محیطی (gr/cm3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>عوامل محیطی (gr/cm3)</td>
</tr>
</tbody>
</table>

تجزیه و تحلیل آماری

بر این اساس مقااس میانگین عوامل محیطی در تیپ های مختلف گیاهی صورت گرفت. با توجه به مقادیر P-value از بین عوامل محیطی، میتوان این مقادیر ارتفاع، بیش، جهت شمالی، مقدار رس، رطوبت، ماهی آبی، ازت، شن، سفرا و...
نتایج حاصل از مقایسه میانگین عوامل محیطی حاکی از آن است که نسبت‌های گیاهی از نظر ارتفاع از سطح دریا و شیب با هم اختلاف معنی‌دار دارد و نسبت 3 در مناطق با متوسط ارتفاع 2186 متر (پایین‌ترین ارتفاع در منطقه مورد مطالعه) و نسبت 2 در مناطق با شیب بالا (برقراری از درصد پراکنش دارد. از نظر جهت شمایی نسبت 1 و 3 در یک طبقه قرار گرفته و از این نظر با یکدیگر اختلاف معنی‌داری دارند. نسبت 1 از نظر میزان رس خاک و نسبت 2 از نظر میزان شن خاک با ترتیب بالاترین مقدار را دارند و از این لحاظ با سایر نسبت‌های گیاهی اختلاف معنی‌داری دارند. بیشترین میزان هدایت الکتریکی در نسبت گیاهی 3
جدول 3- آزمون دانگی میانگین عوامل محیطی در سه تیپ گیاهی

<table>
<thead>
<tr>
<th>سطح</th>
<th>بیت 1</th>
<th>بیت 2</th>
</tr>
</thead>
</table>

مواد و مراحل

گردبانی استخراج گردی، با توجه به طول گردبانی که بزرگتر از 3 بود، به منظور تعیین موثرترین عوامل محیطی بر یکاکش پرمیتر تن بوده و مطالعه از آنالیز تحلیل تطبيقت متغیر (CCA) در محیط نرمافزار استفاده شد. سپس دیاگرام دو بعدی گونه-عوامل محیطی ترسیم و تشریح گردید.

نتایج

اطلاعات جمع‌آوری شده در مرحله نمونه‌برداری با شیوه‌ای گیاهی در پروانه‌هایی در مرتع خوش بیلاق در جدول 4 ارائه شده است. نتایج نشان می‌دهد گونه‌های دارویی Asteragalus verus (Stachys inflata) (گون خاردار) (ستنبله‌ای ارغوانی) و Stachys byzantina (گون خاردار) (ستنبله‌ای ارغوانی)، Artemisia phlomis cassellana (گوشی سفید) و (درمانه موهی) در واحدهای نمونه‌برداری حضور داشتند.

همیستگی و معنایی نتیجه گیری بر آن بررسی مقدار همیستگی است که مقادیر بالای 0.05 درصد را به عنوان همیستگی قوی معرفی می‌گردند.

1- Detrended correspondence analysis = DCA
2- Canonical correspondence analysis = CCA

حروف مشابه نشان‌دهنده عدم وجود اختلاف معنی‌دار بین عوامل محیطی در سه تیپ گیاهی می‌باشد.

بعد از جمع‌آوری اطلاعات و نرم‌سازی داده‌ها از طریق تبدیل لگاریتمی (log), جدول مربوط به گونه‌های گیاهی و عوامل محیطی به صورت جداول تشكل شد. لازم به ذکر است که از عامل تراکم ویژه گیاهی جهت انجام آنالیز استفاده گردید (۴۵). قیمت آنالیز روندی نشان داد که از عوامل محیطی محوری برای استخراج گردی و پردازش آنالیز همیستگی مسئول در جدول عوامل محیطی، همیستگی همیستگی مسئول با یکدیگر محسوس و بررسی شد. اساس قاعده عمومی، همیستگی مسئول با یک میزان همیستگی بالای ۷۵ درصد، وارد آنالیز رجیندید نشدند (۴۴ و ۴۵). عامل جهت گرفتاری با استفاده از تبدیل سینوس (جربوی به مقدار (Sin(α)) و کسبوکس (شمالی به مقدار (Sin(α)) کم بود. نظر شناختی (گربه زانویه) به است که در عرضه حین عملیات نمونه‌برداری برای پیش‌بینی با کمک GPS نیست شد (۴۳). آنالیز تطبیقی گرایی‌شده (DCA) که یک روش آنالیز غیرمستقیم است، طول
نتایج آنالیز همبستگی نشان داد از بین متغیرهای مستقل، عامل ارتفاع با میزان شبب و مقدار همبستگی 0.872 درصد معنی‌دار بود. بهترین مقدار ارتفاع در ارتفاعات 0/300 متر و از آن به بعد کاهش یافته بود.

<table>
<thead>
<tr>
<th>جدول 4: مجموعه گیاهان دارویی منطقه مورد مطالعه</th>
<th>نام علمی</th>
<th>نام فارسی</th>
<th>خانواده</th>
<th>تاریخ ناگر</th>
<th>دمای نازک</th>
<th>نسبت</th>
<th>دمای نازک (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marrubium vulgare L.</td>
<td>فرازین</td>
<td>خون</td>
<td>Lamiaceae</td>
<td>1/72</td>
<td>2/87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stachys C. kotch</td>
<td>طبیعی</td>
<td>سیاه</td>
<td>LAMIACEAE</td>
<td>3/01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thymus Kotschyanus</td>
<td>انگلیسی</td>
<td>بهترین</td>
<td>LAMIACEAE</td>
<td>2/21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stachys inflata</td>
<td>انگلیسی</td>
<td>بهترین</td>
<td>LAMIACEAE</td>
<td>3/21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nepeta Boiss. & Buhs</td>
<td>پنبه</td>
<td>بهترین</td>
<td>LAMIACEAE</td>
<td>0/10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stachys</td>
<td>انگلیسی</td>
<td>بهترین</td>
<td>LAMIACEAE</td>
<td>1/11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centaurea kotschyanus</td>
<td>آلمانی</td>
<td>بهترین</td>
<td>LAMIACEAE</td>
<td>2/10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thymus</td>
<td>انگلیسی</td>
<td>بهترین</td>
<td>LAMIACEAE</td>
<td>3/10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cichorium intybus</td>
<td>آلمانی</td>
<td>بهترین</td>
<td>LAMIACEAE</td>
<td>4/10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alyssum alyssoides</td>
<td>بوسنی</td>
<td>بهترین</td>
<td>LAMIACEAE</td>
<td>5/10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhamnus pallasii</td>
<td>فرانسوی</td>
<td>بهترین</td>
<td>LAMIACEAE</td>
<td>6/10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anchusa officinalis</td>
<td>انگلیسی</td>
<td>بهترین</td>
<td>LAMIACEAE</td>
<td>7/10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peganum harmala</td>
<td>انگلیسی</td>
<td>بهترین</td>
<td>LAMIACEAE</td>
<td>8/10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allium ursinum</td>
<td>انگلیسی</td>
<td>بهترین</td>
<td>LAMIACEAE</td>
<td>9/10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
کاهش یافته است؛ همچنین نتایج تحلیل ترکیبی متغیرین گویای ان بوده که اولین مورد با مقدار ۳۶۴/۰۰ و همین‌گونه به وسیله ۵/۷۵ درصد از کل تغییرات را توجیه می‌کند (جدول ۵). در مجموع محورهای یک تا نه ۵۳ درصد از واریانس داده‌ها را توجیه می‌کنند.

جدول ۵: نتایج آنالیز CCA و DCA برای عوامل محیطی در ارتباط با گونه‌های گیاهی

<table>
<thead>
<tr>
<th>محور مواد</th>
<th>موفقیت</th>
<th>انالیز</th>
</tr>
</thead>
<tbody>
<tr>
<td>محور مواد</td>
<td>حالت اول</td>
<td>DCA</td>
</tr>
<tr>
<td>محور مواد</td>
<td>حالت اول</td>
<td>CCA</td>
</tr>
</tbody>
</table>

محور اول بیشترین همین‌گونه را با عوامل جهت جغرافیایی (شمالی) (۵/۳۰۰۰) و ماده آلی (۲۷۲/۰۰۰۰) در جهت منفی با عامل میزان فسفر (۲۴۶/۰۰۰۰) در جهت منفی با عامل میزان شیب دارد. محور دوم بیشترین همین‌گونه را با عامل میزان شیب (۱۵۶/۰۰۰۰) در جهت معکوس، درصد رطوبت (۵۳/۰۰۰۰) و درصد.

جدول ۶: همین‌گونه متغیری محیطی با محورهای رتبه

<table>
<thead>
<tr>
<th>علائم خاصیت</th>
<th>علائم خاصیت</th>
<th>علائم خاصیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>مواد داخلی</td>
<td>مواد داخلی</td>
<td>مواد داخلی</td>
</tr>
<tr>
<td>محور مواد</td>
<td>محور مواد</td>
<td>محور مواد</td>
</tr>
</tbody>
</table>

همین‌گونه منبی و با چهت جغرافیایی و ماده آلی (Artemisia) همین‌گونه معکوس دارد. کونه گیاهی درون (جدول ۶) واقع در ربع دوم با میزان فسفر همین‌گونه معکوس و در ربع دوم با ماده آلی چهت جغرافیایی و شبیه رابطه نشان داد که بزرگ‌ترین طول گرانیان از عدد ۳ بیشتر است و اهمیت محورهای بر مبنای مقدر وسیله اولیه به مورد روندی قرار گرفته است.

شکل ۲: نمودار توزیع گونه‌های گیاهی در ارتباط با خصوصیات بستر و بندی و خاکی در محیط‌های مختلف ۱ و ۲ است. گونه گیاهی سنبله‌ای ارغوانی واقع در ربع اول با میزان فسفر و شبیه (Stachys inflata)
هریستنگی مثبت دارد. او نشان می‌دهد که با پراسترس میزان بیشتری از بیشترین عوامل محیطی بر روی محیطی مخلوط بیشتر است.

Phlomis cansellata (4) و *Stachys byzantina* (5) 3 نمونه‌گیری مختلته 1 و 2 در شکل 2 نشان داده می‌شود. بررسی نشان داد که گونه‌های φυσِ کیا* الگوس* با بیشترین اختلال و*B. byzantina* با بیشترین بیشتری از جنسیت‌های صفر از این گونه‌ها در این منطقه به‌طور کلی معکوس است.

Artemisia aucheri (6) و *Phlomis inflata* (7) نشان می‌دهد که در ربع دوم عمدتاً تحت تأثیر محور دوم بوده که با میزان صفر *لیستی‌کیا* و*B. byzantina* و*B. verus* است. در بررسی نهایی گونه‌های φυσِ کیا* الگوس* میزان اختلال بیشتری از این گونه‌ها در این منطقه به‌طور کلی معکوس است.

Artemisia aucheri (6) و *Phlomis inflata* (7) نشان می‌دهد که در ربع دوم عمدتاً تحت تأثیر محور دوم بوده که با میزان صفر *لیستی‌کیا* و*B. byzantina* و*B. verus* است. در بررسی نهایی گونه‌های φυσِ کیا* الگوس* میزان اختلال بیشتری از این گونه‌ها در این منطقه به‌طور کلی معکوس است.

Artemisia aucheri (6) و *Phlomis inflata* (7) نشان می‌دهد که در ربع دوم عمدتاً تحت تأثیر محور دوم بوده که با میزان صفر *لیستی‌کیا* و*B. byzantina* و*B. verus* است. در بررسی نهایی گونه‌های φυσِ کیا* الگوس* میزان اختلال بیشتری از این گونه‌ها در این منطقه به‌طور کلی معکوس است.
بحث و نتایج

پراکنش گونه‌های دارویی مورد مطالعه در فضای دو

بعدی آنالیز تحلیل تطبیقی متعارف به همراه متغیرهای محیطی نشان داد از بین عوامل پستی و بلندی، میزان شیب و جهت جغرافیایی به ترتیب با میزان همبستگی 0.6 و 0.50 رتبه‌بندی شد. درصد رطوبت، درصد رس، عمق آبی خاک، میزان فسفر و درصد شیب به ترتیب با میزان همبستگی 0.568 و 0.470 و 0.400 مرتبط بودند. عوامل مورد تحلیل همبسته‌ای که می‌تواند نتایج حاصل از مقایسه میانگین نیز پراکنش گونه‌های محیطی ذکر شده بین بیشترین اختلاف معنی داری را به حذف آماری دارد (p-value < 0.05).

(1) Stachys inflata (سبلنای ارغوانی) بررسی و تحقیقات انجام شد. سابلنای ارغوانی یکی از گونه‌های شناسایی شده در کوهستان منطقه است. این گونه در فضای دو درصد رطوبت و درصد شیب می‌تواند نتایج حاصل از مقایسه میانگین نیز پراکنش گونه‌های محیطی ذکر شده بین بیشترین اختلاف معنی داری را به حذف آماری دارد (p-value < 0.05).

(2) Artemisia aucheri-Stachys inflata (سبلنای ارغوانی) بررسی و تحقیقات انجام شد. سابلنای ارغوانی یکی از گونه‌های شناسایی شده در کوهستان منطقه است. این گونه در فضای دو درصد رطوبت و درصد شیب می‌تواند نتایج حاصل از مقایسه میانگین نیز پراکنش گونه‌های محیطی ذکر شده بین بیشترین اختلاف معنی داری را به حذف آماری دارد (p-value < 0.05).

(3) Tsuia

1. Kohandel
2. Khajadin
هرنارکان (2013) در منطقه پلاور استان مازندران نیز ارتفاع و شیب رد پرکش گونه‌های گیاهی مولوی از مینودند. پایبوی و هرنارکان (2014) بی بررسی اکنولوژیکی جوامع درنده کوهی (Artemisia aucheri) در سه منطقه خروش گلو (سرم،) بی‌ایاد (طنز) و اشن (نجفی‌آباد) واقع در انتظار استفاده برداشته به این نتیجه رسیدند که در ارتفاعات بالا دست بیشتری تراکم درنده کوهی در ارتفاع 2450 تا 2850 مترا و 250 مترا یافته بوده و حداکثر ارتفاع آن 2750 مترا ویژنیک در منطقه (Artemisia aucheri) گرفته و شدت این نتیجه رسيدند که بر ارتفاع، زیستگاه گونه درنده کوهی 1000 مترا در منطقه خورشیدیان حداکثر ارتفاع آن 2700 مترا در منطقه چهار باغ و بیشترین تراکم این گونه در محدوده ارتفاعات 2000 مترا است. این نتایج در تلاش با نتایج تحقیقات زراعت جانوکو و هرنارکان (2010) در مرمت پشتیوک استان یزد که اذعان دانشگاه گونه درنده کوهی از ارتفاع 2400 مترا به بالا بر روی اراضی نسبتاً بیدار و خاک‌هایی با بارک سبک و سنگزی‌های گسترش دارد. به نظر می‌رسد این جاری می‌تواند به دلیل تفاوت در اقلیم و ناحیه رویشی دو منطقه باشد. در بررسی‌های جغرافیایی پایبوی و هرنارکان (2014) (جدایی دو گونه درنده کوهی) نیز تحت تأثیر عامل ارتفاع ذکر شد (Artemisia aucheri) و گونه (Artemisia Sieberi) در ارتفاعات بالا مشاهده نشد. این نتایج در تلاش با نتایج در تعداد محدودی از قاپی‌ها فاقد شد.

در تحقیقات دولایی شام اسپری و هرنارکان (2017) بر اساس تحقیقات محلولی همه‌گاهی در سطح‌های گیاهی (که ۱۸درصد، چهار جنگافیایی جنوب شرقی و خاک‌های غی از ماهالی ذکر شده است. یکی از دلایل وجود مقدار بالای مواد آلی در مناطق با حضور بیشتر درنده کوهی طبق مشاهدات بر عمل آمد در منطقه، می‌تواند تجربه بیشتری از تجلیل تراشتری دنیای تراشتری و درنده کوهی مزدک باشد. منفی‌نگین مواد آلی با میزان ارتفاع هسته‌گی مثبت و منفی داری (۹۶۹۲۰۰۹) است به طوری که بیشتر درنده کوهی در ارتفاع خاک نیز در مناطق اکنون، این استادا در ارتفاع به محدوده پرکش گونه (Stachys inflata) در منطقه متفاوت و برشی تا شیب متوسط ۴۵ درصد قرار دارند و میزان فضیر در این (محدوده) با استاد است.

گسترش این گونه منابع مختلفی نظیر: شکته‌ها و هرنارکان (2016) بر همستگی عامل ارتفاع و فضیر خاک تاکید دارند، در مورد تحقیق حائز نیز باید خاطر نشان نمود که دو دلیل دیگر نیز جهت توجه عامل فضیر در مناطق مرتفع و کم شیب خوش بیان شایان توجه است. اول اینکه به حضور گسترش گونه پنی‌های (Stachys inflata) در انتظار بالا دست بیشتری تراکم درنده کوهی در خاک به علت روشگاه پنی‌های راهی که ریشه این جایگاه قدر است فضیر قابل جذب را جذب کند. این نتایج با نتایج تحقیقات عابدی و هرنارکان (2000) هستند. همین‌طور و هرنارکان (۲۰۱۷) در نتایج پشتیویک استان یزد که اذعان دانشگاه گونه پنی‌های قدر همستگی فضا از لابه‌های عمیق خاک جذب نموده و پس از مردن و بوسیدن انسان آنها مقدار زاویه فضیر در لابه‌های خاک تجمع پیدا می‌کند. همین انتظار مقابل با نتایج تحقیقات طرح و هرنارکان (۲۰۱۵) (میزان فضیر در عمر ۱۵ تا ۳۰ سانتی‌متری بیشتر است که نمونه‌های خاک در محدوده‌ی نیز در عمر ۵۰ سانتی‌متری Stachys inflata (ریشه‌دنری گیاه) جمع‌آوری شده از آن به نظر می‌رسد عامل شیب در کاهش تجمع فضیر در عمر جذب ازگذاری نیمه‌ی استاد است

بیو‌های گیاهی دارویی در گونه (Artemisia aucheri) (عوامل محدوده‌های و ارتفاع کم (متوسط ارتفاع ۱۷۸۰ متری) بر روی اراضی نسبتاً بیدار و ماهالی تراشتری و درنده‌های جنوبی و شرقی را می‌پندد که جوانه‌ها می‌سوزند هسته‌گی مثبت و گونه (Artemisia Sieberi) در منطقه است. در نتایج پرکشی و هرنارکان (۲۰۱۵) در منطقه متفاوت و برشی تا شیب متوسط ۴۵ درصد قرار دارند و میزان فضیر در این (محدوده) با استاد است.

1- Zare Chahouki
شبکه‌های محلولی، به دلیل امکان پیش‌بینی آب‌های خاک، بیشتر است که می‌تواند درlocus (افزایش حضور) نمونه‌هایی از گروه‌های مختلفی از این سایتهای محلولی را مورد آزمون قرار دهد. به‌طور کلی، لابی گیاهی از آمارهای نسبی کاهش در توده‌ها و تغییرات در حضور گیاهی در مناطق مختلف به‌دلیل تغییرات در محیط اطراف، به‌طور کلی می‌تواند داشته باشد. ممکن است که این می‌تواند رویکردهایی را برای بررسی تغییرات در محیط‌های مختلف و باعث کاهش در حضور گیاهی در مناطق مختلف شود.

citation: Pinke
References

1. Administration of natural resources and watershed management of Golestan province. 2015. Socio- Economic report of sequestration studies of the Till abad watershed.

10. Food and Agriculture Organization, 2008. Trade in Medicinal Plants. Raw Materials, Tropical and Horticultural Products Service Commodities and Trade Division Economic and Social Department.

