پیشینه اثر تغییر اقلیم بر روشگاه بالقوه استیبی بیابانی

زایگرس مركزي

سیما طیموری اصل ۱، علی اصغر تفتی پریج ۲، مهدودارا اشکوردارا ۳ و میمن حیدریان ۴

تاریخ دریافت: ۱۳۹۹/۰۳/۰۸ - تاریخ 수بای: ۱۳۹۹/۱۲/۲۵

چکیده

گونه گیاهی استیبی بیابانی (Stipa hohenackeriana) از نظر تولید عطری و حفاظت خاک از اهمیت ویژه‌ای برخوردار است. در این مطالعه، اثر تغییر اقلیم این گونه در استان چهارمحال و بختیاری واقع در منطقه زایگرس مرکزی بیشتری شده است. باید این ملاحظه کرد که پس از استفاده از سیستم موقعیت یاب جهانی (GPS) و هماهنگی با ۹ منیتر مکسیمال شامل منطقه‌های یزد، اصفهان، فیروزآباد و بوشهر/کارکردها من در مدل‌سازی اجتماعی اصلی مدل‌سازی بیشتری شده و در مدل‌سازی تحقیق بخش عصبی مصنوعی، عروش افزایشی، پیکربندی و رگرسیون چند متغیری تطبیق استفاده شده است. پیش‌بینی یا این بیابانی رالس های ۲۰۵۰ و ۲۰۷۰ و بر اساس چهار افزایش گازهای گلخانه‌ای RCP2.6، RCP4.5 و RCP8.5 و مدل‌گرده معمول MRI-CGC3، RCP6، RCP8.5، RCP4.5، RCP2.6 از این مدل‌ها مورد مطالعه در شرایط اقلیمی امروزی به عنوان روشگاه‌های مطلوب گونه استیبی بیابانی شناسایی شد. مدل‌ترين متغیرهای در مدل‌گرده‌های یزد، اصفهان، فیروزآباد و بوشهر/کارکردها به عنوان مدل‌گرده روشگاه پیش‌بینی کرده که با استفاده از سیستم موقعیت یاب جهانی (GPS) و به روش کمترین دامی پارک‌های تیرن فصل سال، تغییرات فضایی یادگیری و شامل هم‌دامپی بوشن. در مدل‌گرده‌های یزد، اصفهان، فیروزآباد و بوشهر/کارکردها در سال ۲۰۵۰ و ۲۰۷۰ ۴۲ درصد (RCP 4.5) و ۲۲ درصد (RCP 2.6) مدل زمنی مورد بررسی شد. مناطق تعیین شده به عنوان روشگاه مناسب بر این مطالعه می‌تواند برای معرفی مجدد و استقرار استیبی بیابانی مورد توجه قرار گیرد.

واژه‌های کلیدی: تغییر اقلیم، چهارمحال و بختیاری، مدل سازی پراکنش گونه‌ای، مدل جکل تصادفی، Biomod2، مدل‌سازی اجتماعی

۱- دانشجوی کارشناسی ارشد مدرکار، گروه مرتع و آبخزیداری، دانشگاه منابع طبیعی و علوم زمین، دانشگاه شاهرود، شهرکرد، ایران.
۱- استادانه گروه مرتع و آبخزیداری، دانشکده منابع طبیعی و علوم زمین، دانشگاه شاهرود، شهرکرد، ایران.
۱- aa.naghipour@sku.ac.ir
۲- دانشجوی کارشناسی ارشد مدرکار، گروه مرتع و آبخزیداری، دانشکده منابع طبیعی و علوم زمین، دانشگاه شاهرود، شهرکرد، ایران.
۲- دانشجوی کارشناسی ارشد مدرکار، گروه مرتع و آبخزیداری، دانشکده منابع طبیعی و علوم زمین، دانشگاه شاهرود، شهرکرد، ایران.
۲- دانشجوی کارشناسی ارشد مدرکار، گروه مرتع و آبخزیداری، دانشکده منابع طبیعی و علوم زمین، دانشگاه شاهرود، شهرکرد، ایران.
پیش‌بینی اثر تغییر اقلیم بر روش‌های بالغ‌نشین استی و بی‌پایین

در این مقاله، تأثیرات تغییرات اقلیمی سال‌های گذشته بر ارتفاعات جغرافیایی گونه‌های مختلف و حتی انحراف محلی برخی گونه‌ها به ویژه در لبه‌های زیست‌گاه‌ها نزدیک کوه‌ها است. (27) بر این اساس، به نظر می‌رسد تغییرات شرایط محیطی این زمان‌ها از جمله تغییر در کوه‌های جنگل‌دار و نوسان دمایی، منجر به تغییر مطلوبی اکوسیستم‌های طبیعی برای گونه‌های مختلف خواهد شد. درک چگونگی پاسخ گونه‌ها در مواجهه با تغییرات اقلیمی اینه، اهمیت زیادی دارد و به چنین حفاظت از آراپ که از نو نموده از دید مطالعه در این مقاله می‌باشد.

در این مقاله، مدل سازی اثرات اقلیمی آینده بر پراکنش گونه‌های ضروری است (27). یکی از مدل‌های پراکنش جغرافیایی گونه در آینده این مدل سازی اکتشافات مربوط به حضور گونه، متغیرهای محیطی و تغییرات این اثرات با شرایط محیطی جدید در آن این اطلاعات به منظور پاسخ به دو پرسش مهم است: (1) در حال حاضر گونه مورد مطالعه در چه شرایط اقلیمی باید مشد؟ (2) این گونه در چه شرایط اقلیمی آینده حضور خواهد داشت؟ در این مقاله، روش‌های اکتشافی مدل‌سازی بر اساس آراپ که در مورد شرایط آب و هوا و ویژگی‌های طبیعی منحصربه‌فرد و همچنین تأثیر قابل توجهی از ویژگی‌های جغرافیایی گونه و گونه‌ها از این نظر به ارزیابی تصمیمات شرایط محیطی و کاربری زمین بر پراکنش گونه‌ها استفاده شده است. مدل آمیز کوئزیک در را توان پراکنش احتمالی یک گونه که پایدارتر از مناطق محیطی و منطقه واقع در گونه که است، یک دیجیتال مدل آمیز کوئزیک در (GIS) است که در اثرات اکتشافات و شرایط محیطی، منابع داده‌های اثرات اقلیمی استی و بی‌پایین، مسئله مشابه ای برای گونه‌ها را تغییر خواهد داشت (36) و (37).

در این مقاله، مدل‌سازی اکتشافات اقلیمی بر پراکنش سال‌های گذشته و آینده محقق می‌باشد. (27) در این مقاله، تأثیرات تغییرات اقلیمی سال‌های گذشته بر ارتفاعات جغرافیایی گونه‌های مختلف و حتی انحراف محلی برخی گونه‌ها به ویژه در لبه‌های زیست‌گاه‌ها نزدیک کوه‌ها است. (27) بر این اساس، به نظر می‌رسد تغییرات شرایط محیطی این زمان‌ها از جمله تغییر در کوه‌های جنگل‌دار و نوسان دمایی، منجر به تغییر مطلوبی اکوسیستم‌های طبیعی برای گونه‌های مختلف خواهد شد.

زیست‌پرداز مکانی بر اساس شرایط آب و هوا و ویژگی‌های طبیعی منحصربه‌فرد به ویژه در منطقه‌های گونه‌های جغرافیایی نزدیک کوه‌ها است. (27) در این مقاله، تأثیرات تغییرات اقلیمی بر پراکنش گونه‌ها مورد مطالعه است. در این مقاله، روش‌های اکتشافی مدل‌سازی بر اساس آراپ که در مورد شرایط آب و هوا و ویژگی‌های طبیعی منحصربه‌فرد و همچنین تأثیر قابل توجهی از ویژگی‌های جغرافیایی گونه و گونه‌ها از این نظر به ارزیابی تصمیمات شرایط محیطی و کاربری زمین بر پراکنش گونه‌ها استفاده شده است. مدل آمیز کوئزیک در (GIS) است که در اثرات اکتشافات و شرایط محیطی، منابع داده‌های اثرات اقلیمی استی و بی‌پایین، مسئله مشابه ای برای گونه‌ها را تغییر خواهد داشت (36) و (37).

در این مقاله، مدل‌سازی اکتشافات اقلیمی بر پراکنش سال‌های گذشته و آینده محقق می‌باشد. (27) در این مقاله، تأثیرات تغییرات اقلیمی سال‌های گذشته بر ارتفاعات جغرافیایی گونه‌های مختلف و حتی انحراف محلی برخی گونه‌ها به ویژه در لبه‌های زیست‌گاه‌ها نزدیک کوه‌ها است. (27) بر این اساس، به نظر می‌رسد تغییرات شرایط محیطی این زمان‌ها از جمله تغییر در کوه‌های جنگل‌دار و نوسان دمایی، منجر به تغییر مطلوبی اکوسیستم‌های طبیعی برای گونه‌های مختلف خواهد شد.

زیست‌پرداز مکانی بر اساس شرایط آب و هوا و ویژگی‌های طبیعی منحصربه‌فرد به ویژه در منطقه‌های گونه‌های جغرافیایی نزدیک کوه‌ها است. (27) در این مقاله، تأثیرات تغییرات اقلیمی بر پراکنش گونه‌ها مورد مطالعه است. در این مقاله، روش‌های اکتشافی مدل‌سازی بر اساس آراپ که در مورد شرایط آب و هوا و ویژگی‌های طبیعی منحصربه‌فرد و همچنین تأثیر قابل توجهی از ویژگی‌های جغرافیایی گونه و گونه‌ها از این نظر به ارزیابی تصمیمات شرایط محیطی و کاربری زمین بر پراکنش گونه‌ها استفاده شده است. مدل آمیز کوئزیک در (GIS) است که در اثرات اکتشافات و شرایط محیطی، منابع داده‌های اثرات اقلیمی استی و بی‌پایین، مسئله مشابه ای برای گونه‌ها را تغییر خواهد داشت (36) و (37).

1- Ecological Niche Modelling
انجام شده است. اغلب این پژوهش‌ها اثر منفی تغییر اقلیمی بر پراکنش گونه‌های این جنس را پیش‌بینی نموده‌اند (20، 28 و 45). با وجود اهمیت جنس در کشور، ناقص پژوهش‌های اندکی در زمینه مدل‌سازی پراکنش گونه‌های این جنس به انجام رسیده است. به عناوان نمونه، زراعت چاوهکی و همکاران (2018) با استفاده از مدل S. barbata و نظریه جفت‌گیری گونه در منطقه طالقان بررسی نمودند. اما، ناکوش پیامدهای تغییر اقلیم بر گونه استاتیوی بای بای مورد تحقیق قرار نگرفته است.

استان چهارمحال و بختیاری به علت تناوب بالای فیزیوگرافی امکان بررسی متغیرهای عکس العمل گونه استاتیوی بای بای مورد تحقیق قرار گرفت. این مطالعه یکی از کمترین بررسی‌هایی است که به مطالعه فیزیوگرافی و اقلیم بر گونه استاتیوی بای بای مورد مطالعه قرار گرفته است. به همین دلیل بررسی اثر تغییر اقلیم بر پراکنش گونه‌های استاتیوی بای بای مورد تحقیق قرار گرفته است.

مواد و روش‌ها

منطقه مطالعه

استان چهارمحال و بختیاری با مساحت حدود 16532 کیلومتر مربع یکی از مناطق نیمه خشک است که تقریباً تمام آن در گستره زمانی مرکزی قرار گرفته است. این استان بین 9°29′0″ تا 31°29′0″ عرض شمالی و نیز 49°30′0″ تا 78°40′0″ طول شرقی قرار دارد (شکل 1). این استان عمداً 51° 50′ طول شرقی قرار دارد (شکل 1). این استان عمداً 51° 50′ طول شرقی قرار دارد (شکل 1). این استان عمداً 51° 50′ طول شرقی قرار دارد (شکل 1). این استان عمداً 51° 50′ طول شرقی قرار دارد (شکل 1). این استان عمداً 51° 50′ طول شرقی قرار دارد (شکل 1). این استان عمداً 51° 50′ طول شرقی قرار دارد (شکل 1). این استان عمداً 51° 50′ طول شرقی قرار دارد (شکل 1). این استان عمداً 51° 50′ طول شرقی قرار دارد (شکل 1). این استان عمداً 51° 50′ طول شرقی قرار دارد (شکل 1). این استان عمداً 51° 50′ طول شرقی قرار دارد (شکل 1). این استان عمداً 51° 50′ طول شرقی قرار دارد (شکل 1). این استان عمداً 51° 50′ طول شرقی C3 3 .

- Global Positioning System
با توجه به اینکه تغییر اقلیم بر روی غذایی بالقوه استیکی یاباتی و در کشور ایران به همراه ناقص حضور استیکی یاباتی

شرکت ملی یادبودهای محیطی از نظر ابعاد دقت مکانی و

سیستم مختصر کلفافی آمده در محیط ترمیم افزار

یکسان یا دشند. پیش از اجرای مدل سازی، برای بررسی همبستگی و هم خط بین

متن‌بردار محیطی مختلف از تداوم بررسی و شاخص

تورم و ارایش (VIF) استفاده شد. متن‌بردار با ضریب

VIF< از مدل یا دوره (R^2) و 3 به‌طور کلی به برنامه‌های دارای

هم‌بستگی بالا تعداد ه متفاوت در مدل سازی استفاده شدند

(جدول 1).

مدل‌سازی اجماعی

به‌منظور پیش‌بینی پراکنش روش‌گه‌ها مدل‌سازی

باستی یاباتی از بسته ترم‌ازفارازی 2 (Biomod2) در محیط

نسخه 3.1.2 استفاده شد. در مطالعه حاضر از مدل‌های

یک‌گانه پیشنهاد، MaxEnt (2006) یا همبستگی

(ANN)، تحلیل میزان انعطاف‌پذیری (GLM) (2004) و

جغرافیایی، رگرسیون چند متن‌برداری (MARS)

برای مدل‌سازی روش‌گه‌ها مطلب استیکی

یاباتی استفاده شد. به دلیل این که تمام مدل‌های مورد

5- Flexible Discriminant Analysis
6- Random Forest
7- Multivariate Adaptive Regression splines
8- Area Under the Curve

1- Maximum Entropy
2- Artificial Neural Network
3- Generalized Boosting Method
4- Generalized Linear Model
نتایج

میانگین دمای پایش پنجه ترین فصل سال
Bio8- Mean Temperature of the Wettest Quarter

تغییرات فصلی بارندگی
Bio15- Precipitation Seasonality (Coefficient of Variation)

شاخ همودما
Bio3-Isothermality (BIO2/BIO7) (*100)

مجموع بارندگی سالانه
Bio12- Annual Precipitation

چسب
Slope

تغییرات فصلی دما
Bio4- Temperature Seasonality (standard deviation *100)

جیت جغرافیایی
Aspect

پوشش آبگیری سرمین
cover/Land use Land

مجموع بارندگی کل سال
Bio17- Precipitation of the Driest Quarter

نتیجه‌گیری

در این مطالعه، از مدل گردد عمومی MRI، و چهار سالاریوی RCP6، RCP4.5 و CGCM3 برای پیش‌بینی پیامدهای تغییرات اقلیمی بر اساس RCP8.5 استنباط بستهای در سال‌های ۲۰۵۰ و ۲۰۷۰ استفاده شد. این مدل به عنوان یکی از بهترین مدل‌های برای پیش‌بینی تغییرات اقلیمی در ایران به مدل ArcGIS® ۱۰.۳ تهیه شدند.

توجه

برای همه مدل‌های AUC (۴۲/۰۷) و TSS (۷۳/۰۵) برای همه مدل‌ها در سطوح رودخانه‌ای ارزیابی شدند (جدول ۲). بر اساس یافته‌ها، بالاترین سطح میانگین دمای (۹۴/۹) بر اساس میانگین دمای مدل BrAOnd سالند توزیع بارندگی بارندگی‌های همودما و مجموع بارندگی سالانه به‌صورت مشابه با مدل BrAOnd سالند در کنار همودما و مجموع بارندگی سالانه به‌صورت مشابه با مدل BrAOnd سالند در کنار همودما و مجموع بارندگی سالانه به‌صورت مشابه با مدل BrAOnd سالند در کنار همودما و مجموع بارندگی سالانه به‌صورت مشابه با مدل BrAOnd سالند در کنار همودما و مجموع بارندگی سالانه به‌صورت مشابه با مدل BrAOnd سالند در کنار همودما و مجموع بارندگی سالانه به‌صورت مشابه با مدل BrAOnd سالند در کنار H@I

جدول ۱: میانگین دمای پایش در مدل‌های بر اساس اقیمیات است، بایابانی و اهمیت نسبی آنها بر اساس مدل اجتماعی

به مدل در پیش‌بینی مناطق مطلوب برای حضور استی بیابانی در جدول ۱ نشان داد که به ترتیب، توزیع بارندگی بارندگی‌های همودما و مجموع بارندگی سالانه بارندگی بارندگی‌های H@I

به مدل در پیش‌بینی مناطق مطلوب برای حضور استی بیابانی در جدول ۱ نشان داد که به ترتیب، توزیع بارندگی بارندگی‌های H@I
جدول ۲: مقایسه برآوردهای شاخص سطح زیر منحنی (AUC) و TSS در مدل‌های مختلف

<table>
<thead>
<tr>
<th>شاخص‌ها</th>
<th>مدل</th>
<th>میانگین</th>
<th>استاندارد نیم‌مبدل</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC</td>
<td>MARS</td>
<td>۹۹/۰۸</td>
<td>۸۸/۰۵</td>
<td>۸۲/۰۸</td>
<td>۹۳/۰۸</td>
<td>۷۹/۰۹</td>
<td>۹۹/۰۹</td>
<td>۸۸/۰۸</td>
<td>۸۸/۰۸</td>
</tr>
<tr>
<td>TSS</td>
<td>FDA</td>
<td>۸۵/۰۹</td>
<td>۸۸/۰۵</td>
<td>۸۸/۰۵</td>
<td>۸۸/۰۵</td>
<td>۸۸/۰۵</td>
<td>۸۸/۰۵</td>
<td>۸۸/۰۵</td>
<td>۸۸/۰۵</td>
</tr>
<tr>
<td></td>
<td>GBM</td>
<td>۸۵/۰۹</td>
<td>۸۸/۰۵</td>
<td>۸۸/۰۵</td>
<td>۸۸/۰۵</td>
<td>۸۸/۰۵</td>
<td>۸۸/۰۵</td>
<td>۸۸/۰۵</td>
<td>۸۸/۰۵</td>
</tr>
<tr>
<td></td>
<td>ANN</td>
<td>۹۴/۰۸</td>
<td>۹۵/۰۹</td>
<td>۹۵/۰۹</td>
<td>۹۵/۰۹</td>
<td>۹۵/۰۹</td>
<td>۹۵/۰۹</td>
<td>۹۵/۰۹</td>
<td>۹۵/۰۹</td>
</tr>
<tr>
<td></td>
<td>MaxEnt</td>
<td>۹۶/۰۴</td>
<td>۹۵/۰۹</td>
<td>۹۵/۰۹</td>
<td>۹۵/۰۹</td>
<td>۹۵/۰۹</td>
<td>۹۵/۰۹</td>
<td>۹۵/۰۹</td>
<td>۹۵/۰۹</td>
</tr>
<tr>
<td></td>
<td>GLM</td>
<td>۸۸/۰۸</td>
<td>۸۸/۰۵</td>
<td>۸۸/۰۵</td>
<td>۸۸/۰۵</td>
<td>۸۸/۰۵</td>
<td>۸۸/۰۵</td>
<td>۸۸/۰۵</td>
<td>۸۸/۰۵</td>
</tr>
<tr>
<td></td>
<td>RF</td>
<td>۹۵/۰۹</td>
<td>۹۵/۰۹</td>
<td>۹۵/۰۹</td>
<td>۹۵/۰۹</td>
<td>۹۵/۰۹</td>
<td>۹۵/۰۹</td>
<td>۹۵/۰۹</td>
<td>۹۵/۰۹</td>
</tr>
</tbody>
</table>

شکل ۲: مدل‌های روش‌گاه گونه استقی بیابانی بر اساس روش‌گاه گونه استقی بیابانی حاصل از هفت مدل پراکنش گونه‌ای

شکل ۳: احتمال حضور گونه استقی بیابانی در استاندارد متغیرهای موتور بر اساس مدل RF در استان چهارمحال و بختیاری

[Downloaded from rangelandsrm.ir on 2022-01-17]
جدول 3: روش‌های مطابق فعلی استبی بیانی بر اساس مدل‌های مختلف در استان جهان‌یزد و یک‌نیایی

<table>
<thead>
<tr>
<th></th>
<th>MARS</th>
<th>FDA</th>
<th>GBM</th>
<th>ANN</th>
<th>MaxEnt</th>
<th>GLM</th>
<th>RF</th>
</tr>
</thead>
<tbody>
<tr>
<td>سال اخمری</td>
<td>1282</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>درصد</td>
<td>1282</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
</tbody>
</table>

جدول 4: حساسیت (کیلومتر مربع) و درصد ویشی‌گاه‌های مطابق استبی بیانی بر اساس مدل اجسامی به تفکیک شهرستان‌های استان جهرم‌یزد و یک‌نیایی

<table>
<thead>
<tr>
<th>شهرستان</th>
<th>میزان</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>تربت حیدریه</td>
<td>1282</td>
<td>32</td>
</tr>
<tr>
<td>بهارستان</td>
<td>1282</td>
<td>32</td>
</tr>
<tr>
<td>سرلشکر</td>
<td>1282</td>
<td>32</td>
</tr>
<tr>
<td>اردکان</td>
<td>1282</td>
<td>32</td>
</tr>
<tr>
<td>کرمان</td>
<td>1282</td>
<td>32</td>
</tr>
<tr>
<td>خسروآباد</td>
<td>1282</td>
<td>32</td>
</tr>
<tr>
<td>شهرستان</td>
<td>درصد</td>
<td></td>
</tr>
<tr>
<td>تربت حیدریه</td>
<td>1282</td>
<td></td>
</tr>
<tr>
<td>بهارستان</td>
<td>1282</td>
<td></td>
</tr>
<tr>
<td>سرلشکر</td>
<td>1282</td>
<td></td>
</tr>
<tr>
<td>اردکان</td>
<td>1282</td>
<td></td>
</tr>
<tr>
<td>کرمان</td>
<td>1282</td>
<td></td>
</tr>
<tr>
<td>خسروآباد</td>
<td>1282</td>
<td></td>
</tr>
</tbody>
</table>

بر اساس یافته‌ها، تغییرات مناسب برای پایداری قبل توجهی بر رویشگاه‌های مطابق استبی بیانی در استان وارد سازد. بر اثر ساختار حادثه‌ای از ساروپوهای اقلیمی مختلف نشان می‌دهد که در حدود 18/72 درصد (RCP2.6) تا 33/72 درصد (RCP8.5) از رویشگاه‌های امروزی استبی بیانی به واسطه تغییرات قبل در سطح خواهی رفت. همچنین، بر اساس این ساروپوهای احتمالاً در حدود 34/72 درصد (RCP2.6) و 41/72 درصد (RCP8.5) از رویشگاه‌های امروزی این رویشگاه‌های در حدود 20/70 درصد (RCP2.6) و 60/70 درصد (RCP8.5) در همین دوره زمین در حدود 4/72 درصد (RCP4.5). سال

جدول 5: تغییر رویشگاه‌های مطابق فعلی استبی بیانی نتایج سال‌های 2050 و 2070 تحت ساروپوهای اقلیمی مختلف

<table>
<thead>
<tr>
<th>Sال</th>
<th>ساروپوهای</th>
<th>تغییرات در رویشگاه</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>2050</td>
<td>RCP2.6</td>
<td>-10</td>
<td>10</td>
</tr>
<tr>
<td>2070</td>
<td>RCP4.5</td>
<td>-15</td>
<td>15</td>
</tr>
</tbody>
</table>

体积 1: تغییر در وسعت رویشگاه‌های مطابق فعلی استبی بیانی نتایج سال‌های 2050 و 2070 تحت ساروپوهای اقلیمی مختلف

<table>
<thead>
<tr>
<th>Sال</th>
<th>ساروپوهای</th>
<th>تغییرات در رویشگاه</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>2050</td>
<td>RCP2.6</td>
<td>-10</td>
<td>10</td>
</tr>
<tr>
<td>2070</td>
<td>RCP4.5</td>
<td>-15</td>
<td>15</td>
</tr>
</tbody>
</table>
بحث و نتیجه‌گیری

در این پژوهش، رویش‌ها و مطلوب‌های امروزی استیتی بیابانی در محدوده استان چهارمحال و بختیاری واقع در گستره زاگرس مرکزی مدل‌سازی شد و برآورد‌های از بیان‌های تغییر آب و هوایی از سال‌های 2050 تا 2070 بر اساس یافته‌های حاصل از مدل اجاقی، در حدود 22/77 درصد (498/77) کیلومتر مربع از مساحت استان چهارمحال و بختیاری به عنوان رویش‌های مطلوب استیتی بیابانی برآورد شد. به نظر می‌رسد بخش‌های شرق، مرکز و جنوب شرق استان (شامل شهرستان‌های بروجن، شهرکرد، لرگان و کیار) در مقایسه

با MRI-CGCM3 چهار سالاری: الف) RCP2.6 (ب) RCP4.5 (ج) RCP8.5 (د) RCP6

با MRI-CGCM3

شکل ۴. تغییر در رویش‌های مطلوب استیتی بیابانی از شرایط اقلیمی امروزی تا آینده (سال‌های 2050 تا 2070) بر اساس مدل ۳

بحث و نتیجه‌گیری

در این پژوهش، رویش‌ها و مطلوب‌های امروزی استیتی بیابانی در محدوده استان چهارمحال و بختیاری واقع در گستره زاگرس مرکزی مدل‌سازی شد و برآورد‌های از بیان‌های تغییر آب و هوایی از سال‌های 2050 تا 2070 بر اساس یافته‌های حاصل از مدل اجاقی، در حدود 22/77 درصد (498/77) کیلومتر مربع از مساحت استان چهارمحال و بختیاری به عنوان رویش‌های مطلوب استیتی بیابانی برآورد شد. به نظر می‌رسد بخش‌های شرق، مرکز و جنوب شرق استان (شامل شهرستان‌های بروجن، شهرکرد، لرگان و کیار) در مقایسه

بحث و نتیجه‌گیری

در این پژوهش، رویش‌ها و مطلوب‌های امروزی استیتی بیابانی در محدوده استان چهارمحال و بختیاری واقع در گستره زاگرس مرکزی مدل‌سازی شد و برآورد‌های از بیان‌های تغییر آب و هوایی از سال‌های 2050 تا 2070 بر اساس یافته‌های حاصل از مدل اجاقی، در حدود 22/77 درصد (498/77) کیلومتر مربع از مساحت استان چهارمحال و بختیاری به عنوان رویش‌های مطلوب استیتی بیابانی برآورد شد. به نظر می‌رسد بخش‌های شرق، مرکز و جنوب شرق استان (شامل شهرستان‌های بروجن، شهرکرد، لرگان و کیار) در مقایسه
می‌گذارند. ملاحظه نمایندگان در مدل‌سازی اثرات تغییر اقلیم در مقیاس جغرافیایی و سیستم‌های محیطی و غیر ممکن است (21).

اشتی گستره جغرافیایی چنین استیسی بایانی در پژوهش‌های دیگر از جمله (19) و (28) پیش‌بینی شده است. محدودتر شدن پراکنش جغرافیایی گونه‌های گیاهی منع俱乐部 به واکنشهای تغییر اقلیم در مناطق مختلف کشور از جمله در زاگرس مکزیکی در رابطه با گونه Pistacia atlantica (21) Bromus tomentellus گونه Daphne (24) و در ایران مکزیکی در رابطه با گونه Quercus brantii (19) و Quercus brantii (19) Pistacia atlantica (21) Bromus tomentellus گونه Daphne (24) و در ایران مکزیکی در رابطه با گونه Quercus brantii (19) و Quercus brantii (19)
بشیبینی امت تغییر اقلیم بر رویشگاه بالغو به استنبی بیابانی

گزارش نمونه است

استنبی بیابانی می‌تواند به عنوان یک گونه گالیین مناسب برای احیا و اصلاح در بخش‌های مختلف مراکز کشور به شمار برد. این گونه با بیشتر گونه‌های مناطق استینی تا نیم‌استینی همراه است. از سوی دیگر، با توجه به سازگاری بالا و ترکیبات شیمیایی مناسب این گونه در اولویت پیامدهای کم‌ریز و کم‌دردید، به مانند علوفه، به مانند تولیدی علوفه در مراکز مناسب است (۱۳) این گونه عالوه یا تولید علوفه از نظر نواحی قاحطه‌ای از خاک نیز دارای اهمیت است. نقش‌های پست‌پنی رویشگاه مطلق فلز و آب‌زای (نرمال ۱۹) و (۶) در این پروژه تهیه شدند. می‌تواند توجه به روش‌ها و راه‌های مدیریتی و حفاظتی این گونه مورد استفاده قرار گیرد. مناطقی که در این مطالعه به عنوان رویشگاه مناسب شناسایی شدند، می‌تواند جهت انتقال و معرفی مجد استنبی بیابانی مورد توجه قرار گیرد.
References

